首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   165篇
  免费   81篇
  国内免费   6篇
航空   133篇
航天技术   10篇
综合类   15篇
航天   94篇
  2024年   1篇
  2023年   5篇
  2022年   6篇
  2021年   13篇
  2020年   8篇
  2019年   12篇
  2018年   11篇
  2017年   13篇
  2016年   11篇
  2015年   10篇
  2014年   17篇
  2013年   10篇
  2012年   19篇
  2011年   5篇
  2010年   5篇
  2009年   16篇
  2008年   8篇
  2007年   5篇
  2006年   13篇
  2005年   12篇
  2004年   7篇
  2003年   4篇
  2001年   13篇
  2000年   13篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1988年   1篇
  1986年   1篇
排序方式: 共有252条查询结果,搜索用时 156 毫秒
51.
高性能的俄罗斯液氧/煤油发动机NK-33   总被引:1,自引:0,他引:1  
NK—33液氧/煤油火箭发动机是由萨莫拉国家科研生产联合体——“TRUD”为俄罗斯N—1登月火箭研制生产的。这种四级型的 N—1火箭所使用的发动机均为液氧/煤油火箭发动机,其中30台 NK—33发动机用于第一级,8台与 NK—33发动机类似而面积比更大的 NK—43发动机用于第二级,四台 NK—39发动机用于第三级,一台除带有常平座外类似于 NK—39发动机的 NK—31发动机用于第四级。所有上述的液氧/煤油发动机都是六十年代研制的,均采用一个富氧预燃室产生涡轮燃气,气氧与热煤油经过分级燃烧喷注器在8.964~15.169MPa 绝压下燃烧。NK—33、NK—43和 NK—39发动机可控制发动机簇的推力,并提供火箭的推力向量控制。由于采用高室压,NK—33发动机的设计实现了较高的性能和很轻的结构重量。富氧预燃室的采用,使得发动机有较高的燃烧效率和燃烧稳定性。在预燃室中,全部的液氧以58:1的混合比燃烧,所产生的628.15K 的富氧燃气全部用来驱动涡轮泵的涡轮,然后进入喷注器和燃烧室。NK—33发动机的结构牢固可靠,可实现很高的泵出口压力和14.480MPa 绝压的高燃烧室压力,因此,其面积比可达27:1,可产生2913.57m/s 的海平面比冲和3274.1m/s 的真空比冲。气氧和热煤油喷注器可保证发动机推力降至23%推力水平时仍能稳定燃烧。各次试车之间,无需使用溶解剂清洗 NK—33发动机的零件,也没有发动机零件的碳化现象,这是由于取消了富燃料气发生器和降低推力室冷却套中的煤油温度的缘故。NK—33发动机在用于飞行计划以前进行了充分的试验,共进行了910多次试车,累积点火时间达211,800秒。研制和鉴定完成后,先后共交付了250台 NK—33发动机,可靠性指标达到0.996。已经证实,NK—33发动机是一种高性能的助推发动机。它结构牢固可靠;所采用的技术,到目前为止,未见于美国的发动机。NK—33发动机可凭借低成本和高飞行可靠性改进运载火箭的性能。  相似文献   
52.
动态新闻     
《航天器工程》2014,(5):135-138
<正>18t级液氧煤油发动机累计试车达3600s据中国航天报2014年8月19日报道,中国航天科技集团公司航天推进技术研究院研制的18t级液氧煤油发动机1200s长程试车取得圆满成功,验证了发动机长程工作可靠性、极限入口压力及相关飞行程序适应性,确定了18t级液氧煤油发动机试样技术状态。发动机总试车累积时间已达到3600s,标志着18t级液氧煤油发动机可靠性迈上新台阶,为我国新一代运载火箭的顺利首飞奠定了  相似文献   
53.
李鹏飞  雷凡培  周立新  王凯 《宇航学报》2018,39(10):1157-1166
分别基于RK、SRK和PR等不同真实流体状态方程(EoS)建立了包含亚临界和超临界两种不同机制的瞬态液滴高压蒸发模型。针对我国新一代高压补燃液氧/煤油发动机,对煤油液滴在高压N 2 环境下的蒸发过程进行数值研究,重点分析了不同状态方程对N 2 -C 12 H 26 二元系统高压气液相平衡,及进一步对煤油液滴高压蒸发计算的影响。结果表明:对液滴蒸发速率影响最大的参数是液滴表面蒸气质量分数,而对该参数影响最大的则是所选取的状态方程。基于SRK和PR EoSs的高压气液相平衡及液滴高压蒸发计算结果均与试验数据符合较好,可正确描述液滴高压蒸发特性;而基于RK EoS的相平衡计算结果显著高估液滴表面蒸气质量分数和环境气体溶解度,并低估临界混合温度和偏摩尔相变热,进而在亚临界蒸发状态下高估蒸发速率,在超临界蒸发状态下低估蒸发速率。另外,基于RK EoS的计算中液滴发生跨临界转变所需的环境温度显著低于基于SRK和PR EoSs的。  相似文献   
54.
煤油燃料超燃发动机燃烧室温度测量与计算分析   总被引:4,自引:1,他引:3  
为获得超燃冲压发动机燃烧室流场温度分布特性,深入分析发动机工作特性,对马赫数为2.0,总温为1100K,总压为1.0MPa的来流,利用可调谐的相干反斯托克斯拉曼散射(CARS)技术完成了直连式燃烧室流场温度测量;同时对实验状态进行了三维并行数值模拟,对比分析了计算和实验结果的差异。结果表明,隔离段温度的实验测量值与计算结果的最大相对误差约为0.8%;在燃烧室核心流区域,当量比为0.6和0.8两个状态下,实验测量值分别比计算值偏低约40K和150K,相对差异为4.2%和13%;在凹槽回流区内,当量比为0.6和0.8时实验值则分别比计算值偏低约140K和170K,相对差异为11.7%和7.5%。主喷油位置喷入当量比为0.2的燃料对燃烧室区域的温度和压力分布会产生较大影响,但对扩张段及后部区域的推力性能不会产生显著的改变。   相似文献   
55.
燃料物性对燃烧室燃烧特性有着非常大的影响,是研究设计中首要考虑的参数。借助数值计算方法,采用Fluent稳态压力求解器、P1辐射模型和涡耗散模型(EDM)对某航空发动机燃烧室在巡航工况和最大工况下煤油与柴油两种燃料的燃烧特性进行计算及对比研究,得到该燃烧室使用航空煤油(RP-3)和0~#柴油的热态流场、空气流量分配、温度场、出口温度分布、污染物排放及头部燃油蒸发量。结果表明:在相同工况下,当该燃烧室的燃料由航空煤油改为0~#柴油后,其热态温度场分布基本一致,流量分配最大差异在0.45%之内,燃烧效率降低约4.3%,NO和碳烟粒子排放量相当,出口温度分布和总压损失差异分别在1.0%和4.1%之内。  相似文献   
56.
讨论了液氧/煤油发动机试车中低温测量的重要性,分析了设计目标和技术难题,详细叙述系统的组成和原理以及系统建立后调试和试验情况,得出结论。  相似文献   
57.
本文根据我厂研制的新型发动机涡轮壳体的整体起高压液压强度试验和气密性试验的技术要求对其所需的试验夹具的设计方案、夹具结构设计、夹具的特点、夹具精度、强度计算及结论等内容进行了具体分析和详细论述.  相似文献   
58.
通过数值模拟发现,喷注位置前移有利于改善燃烧性能。为了更加细化探讨,在直连式实验台上进行了进一步的实验研究,研究了RBCC混合燃烧模式中燃料喷注位置对燃烧性能的影响。实验中,详细比较了相同实验条件、不同喷注位置条件下燃烧室压强及燃烧性能。实验发现,在燃烧室前端进行燃料喷注,有利于提高燃烧室压强,提高发动机比冲。可见,燃料提前喷注加强了燃料与火箭羽焰剪切层的掺混,且火箭羽焰对燃料的雾化蒸发效果更佳,使得燃料的燃烧性能得到更大提升,从而提高发动机性能。  相似文献   
59.
中国重型运载火箭动力系统研究   总被引:3,自引:0,他引:3  
分析了未来航天发展趋势,指出为实现载人登月和深空探测,发展重型运载火箭,研制大推力火箭发动机势在必行.提出了中国重型运载火箭主动力--_1500吨级液氧煤油发动机和200吨级液氧液氢发动机的总体方案,确定了发动机的主要参数,明确了发动机的关键技术,考虑了发动机的研制条件,进行了发动机研制策划.根据中国的技术水平和经济实...  相似文献   
60.
简介了国内外运载火箭发动机的研制发展趋势,阐述了我国研制大推力液体火箭发动机的必要性、发展方向以及研制的路子、指导思想与原则、编制标准体系表等内容。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号