首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1880篇
  免费   467篇
  国内免费   231篇
航空   1632篇
航天技术   290篇
综合类   211篇
航天   445篇
  2024年   17篇
  2023年   80篇
  2022年   74篇
  2021年   84篇
  2020年   104篇
  2019年   121篇
  2018年   77篇
  2017年   101篇
  2016年   90篇
  2015年   83篇
  2014年   139篇
  2013年   113篇
  2012年   106篇
  2011年   121篇
  2010年   141篇
  2009年   117篇
  2008年   127篇
  2007年   100篇
  2006年   86篇
  2005年   76篇
  2004年   67篇
  2003年   72篇
  2002年   61篇
  2001年   54篇
  2000年   41篇
  1999年   33篇
  1998年   34篇
  1997年   35篇
  1996年   29篇
  1995年   26篇
  1994年   31篇
  1993年   17篇
  1992年   33篇
  1991年   24篇
  1990年   23篇
  1989年   16篇
  1988年   4篇
  1987年   4篇
  1986年   5篇
  1985年   3篇
  1984年   4篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
排序方式: 共有2578条查询结果,搜索用时 593 毫秒
851.
在稳态换热试验中,试验没有达到稳定就测量会增大误差,常见工况中盘面平均努塞尔数Nu误差的半衰期为2500~2700s。为判断试验是否达到稳定或可测量状态,采用瞬态计算方法对旋转盘腔换热试验的稳定时间的判定方法进行了研究。数值计算结果表明:对于旋转盘腔换热试验,稳定时间较长。提供了一种通过试验精度判定稳定时间和可测时间的方法,试验前可以由固体非稳态导热的傅里叶数估算可测时间。建议试验过程中每隔一段时间观测传感器数值,观测时间间隔按对数规律确定,直到传感器数值不变以确定达到稳定状态。   相似文献   
852.
曲锥前体/三维内转进气道一体化设计与分析   总被引:2,自引:0,他引:2  
对圆锥流场在不同攻角条件下的气动特征进行分析,以流线追踪技术为基础,发展了一种曲锥前体/三维内转进气道一体化设计方法,获得了三个几何参数对一体化方案外形和性能的影响规律。研究发现,三维内转进气道侧壁外扩角对进气道流量捕获系数影响明显,而捕获形状圆心角对进气道的影响主要表现在几何特征上。此外,进气道流量捕获系数随外压缩段总长度的增大而减小。基于对捕获形状的研究,设计了一种曲锥前体/三维内转进气道,并通过数值模拟对该方案进行研究。结果表明:在设计点来流马赫数为6.0时,该方案进气道流量捕获系数能够达到0.93,且具有0.61的总压恢复系数;在非设计点来流马赫数为5.0时,流量捕获系数能够保持在0.86,总压恢复系数为0.77。   相似文献   
853.
高扬  李密  高磊 《航空发动机》2018,44(2):98-102
风车状态进口流量和内阻力是试飞安全评估中必须获取的重要信息。为评估燃烧室空中复燃能力和风车状态下飞机阻力,在1维管流理论基础上,结合流量连续原理,介绍了1种通过直接测量尾喷管出口马赫数、间接获取空气流量和内阻力的测量方案,并根据相似原理,将其推广应用至不同几何的发动机,发展了1种不依赖发动机部件特性,且适用于不同几何结构的涡喷/涡扇发动机通用的风车状态空气流量和内阻力估算方法。最后以GE公司的CF34-10A发动机为例,对其风车状态下的进口空气流量和内阻力进行了估算,估算结果与GE公司提供的风车状态数据吻合,满足工程需求。该方法对多发飞机起飞、爬升、着陆以及巡航阶段单发失效时的飞机阻力性能估算和风车起动研究具有重要意义。  相似文献   
854.
采用SST k-ω湍流模型,对矩形与收敛两种通道内高实度(45%)圆形扰流柱的传热与流动特性进行数值模拟。通过比较两种通道内的流场结构,分析其内部冷却气体的流动机理,进而探求扰流柱阵列的传热性能与压降变化。结果表明:通道类型对内部流场结构有很大影响。收敛通道内流体的速度相比矩形通道的呈现沿程增加的趋势,其对自身的流动损失及换热效果影响加大;两种通道内扰流柱的平均换热水平随进口雷诺数的增大均呈指数上升趋势,相比较收敛通道的更高,但差距逐渐缩小;两种通道的整体压力损失系数均呈指数下降趋势。同一进口雷诺数下,矩形通道在中游出现换热峰值,收敛通道的换热效果沿流向持续提升,两者虽在相同排列产生换热波动点,但单排换热差距逐渐增大。矩形通道内单排扰流柱压力损失系数沿流向先降低后升高,收敛通道内则持续上升。  相似文献   
855.
功能梯度材料是物理性能连续变化的非均匀复合材料,其结构特点消除了材料内部严重的热应力界面,在航空、航天及核反应堆等工程领域具有广阔的应用前景。针对功能梯度材料的稳态热传导问题,给出一种基于边界元模型的统计多尺度分析方法,并针对典型问题进行数值模拟。首先,在功能梯度材料微结构随机分布且体积分数随着位置变化的表征基础上,建立等效热传导系数的多尺度边界元分析模型;然后,给出统计意义下的数值计算方法;最后,研究颗粒随机分布功能梯度材料的热传导性能,并通过与实验结果对比对算法进行验证。结果表明:统计多尺度边界元方法对于预测功能梯度材料的热传导性能是有效的。  相似文献   
856.
在某雷达导引头的测试过程中,对二次电源模块的供电指标提出了很严苛的要求,交流畸变系数是评价导引头二次电源的一个重要指标。目前,对电源交流畸变系数的测试主要是通过离散Fourier 变换(DFT)变换获得频谱来分析,但是DFT会存在频谱泄露等原因使得测试结果的精度还有待提高。针对以上不足,通过加窗和插值修正算法对传统DFT算法进行修正,给出了基于Hanning窗和Quinn插值算法的频率和幅值的估算公式。实验结果表明,本文的方法具有精度高、效率好的特点,能够满足测量要求。  相似文献   
857.
针对运载火箭电动伺服机构谐振频率过低,而传统陷波滤波器算法会降低系统的快速性问题,提出了一种基于自抗扰控制(ADRC)的微分前馈控制算法。在开环等效增益相近的情况下,比较了系统在传统PID控制和一阶ADRC控制方式下的阶跃响应和抗扰性能;对输入正弦指令的情况,比较了系统在比例+扩张状态观测器(ESO)和有限时间比例(FTP)+ESO这两种控制方式下有无输入微分前馈(IDF)的跟踪性能。仿真和实验结果均表明,在常规ADRC中引入IDF,可有效提高电动伺服机构对时变输入的跟踪精度。  相似文献   
858.
郭隽  刘丽平  徐晶磊  张云伟 《推进技术》2018,39(9):1994-2001
为了解涡轮叶栅在跨声速条件下的流动特性和准确预测涡轮叶栅外换热情况,对γ-Reθt转捩模型,依据零压力梯度时自由流湍流度衰减实验结果,给出了一种直接估算来流粘性比的方法,以保证叶片前缘附近具有正确的自由流湍流度分布,提高换热预测准确度;同时减少试算次数。对MARK II与VKI两种叶栅通道跨声速工况下的流动换热情况使用CFX软件,选取层流模型、SST k-ω模型以及缺省粘性比和设定合理粘性比的γ-Reθt转捩模型进行了数值模拟验证,计算结果与实验数据的对比表明:转捩模型优于其他模型;而采用本文方法给定进口粘性比,能准确预测转捩位置,同时显著改善γ-Reθt转捩模型对不同来流湍流度下涡轮叶栅表面换热的预测精度;当入口湍流度较高,相比采用缺省粘性比情况,压力面上换热系数的相对误差降低30%以上,控制在7%左右。  相似文献   
859.
为解决旋转固体表面对流换热系数测试难题,设计并研发了一款基于稳态方法的自热型对流换热系数传感器。进行了管道标定实验,分别与经典经验公式以及自制的标定端进行了对比,结果发现传感器的测试存在一个稳定的比例系数,经修正后相对误差小于5%。采用数值模拟方法进一步从机理方面探究了该比例系数存在的合理性,发现在阶跃加热的情况下存在一个"热调整区",会导致对流换热的阶跃性变化,这种变化类似于"入口效应",同时这种效应不受加热段温度的影响,定性地验证了传感器测量的准确性。  相似文献   
860.
孔晓治  刘高文  雷昭  畅然  刘阳 《推进技术》2018,39(9):2085-2093
为了对比不同齿型下压气机级间封严特性,对基准常规齿、直通针型齿、直通宝塔齿和台阶斜齿时的级间篦齿封严进行了实验研究。在压比1.05~1.30,转速0~8.1kr/min时对不同齿型的工作间隙、泄漏流量、风阻温升和出口盘腔的旋转比进行了测量。基准常规齿是级间最常用的篦齿结构,将其他三种齿型下级间封严的泄漏特性、温升特性和旋流特性与其进行对比。结果表明:随着齿顶间隙的增大,基准常规齿的流量系数先增大后减小,在间隙c=0.8mm附近有最大值;相同间隙时,台阶斜齿的封严效果最好,其流量系数比基准常规齿时小40%左右。直通针型齿、直通宝塔齿的封严效果略优于基准常规齿,三者相差不大;但是,泄漏流量越小,级间封严的温升和旋流越大。压比1.30时台阶斜齿与基准常规齿的温升比为1.5左右。另外,高转速时台阶斜齿比基准常规齿的旋转比大18%左右。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号