首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1179篇
  免费   391篇
  国内免费   193篇
航空   1239篇
航天技术   146篇
综合类   243篇
航天   135篇
  2024年   16篇
  2023年   45篇
  2022年   69篇
  2021年   52篇
  2020年   52篇
  2019年   68篇
  2018年   69篇
  2017年   62篇
  2016年   63篇
  2015年   72篇
  2014年   73篇
  2013年   75篇
  2012年   71篇
  2011年   71篇
  2010年   66篇
  2009年   68篇
  2008年   55篇
  2007年   44篇
  2006年   30篇
  2005年   31篇
  2004年   34篇
  2003年   36篇
  2002年   40篇
  2001年   34篇
  2000年   40篇
  1999年   30篇
  1998年   43篇
  1997年   45篇
  1996年   56篇
  1995年   35篇
  1994年   26篇
  1993年   80篇
  1992年   37篇
  1991年   17篇
  1990年   25篇
  1989年   14篇
  1988年   10篇
  1987年   4篇
  1986年   4篇
  1985年   1篇
排序方式: 共有1763条查询结果,搜索用时 15 毫秒
41.
超声速流中激波/湍流附面层干扰数值模拟   总被引:6,自引:1,他引:6  
采用修正的B/L湍流模型以及多块结构化网格求解了二维N-S方程。分别对超声速流和高超声速流中的激波/湍流附面层干扰进行了数值研究。本文首先研究了进口马赫数为2.96的超声速流。计算结果准确预测了入射斜激波在平直壁面引起湍流附面层分离的流动特征:分离点的反射激波、分离包引起的膨胀扇以及再附点的反射激波。计算的壁面压力分布与实验值吻合较好,计算的分离区长度与实验值比较有一定误差。本文还对进口马赫数为9.22的高超声速流中压缩角引起的激波/湍流附面层干扰进行了数值研究。计算结果与实验结果吻合较好。  相似文献   
42.
采用单曝光光栅干涉或双曝光光栅干涉,研究激波过弯道绕双圆柱传播的微波流场。采用单曝光法,成功显示入射激波到第一圆柱上的反射、绕射,到达第二圆柱上的反射、绕射。在同一底片上采用双次曝光,第一次脉冲记录直道上的平面波,第二次脉冲记录激渡过弯道绕双圆柱流场。这些照片对于研究反射、绕射及它们边界的相互作用是很有用的。  相似文献   
43.
本文利用欧洲的EISCAT雷达观测资料及与这配合的地磁观测数据,用电离层参数直接计算和地面磁场反演两种方法导出了极区电离层Hall电导率,特别显示出在强对流电场激发的E层等离子体不稳定波对电子加热情况下,电导率明显增高。  相似文献   
44.
分析了模拟得到的可以传播到1AU以远的日地空间磁流体力学激波与Rankine-Hugnoniot跃变关系的符合程度.通过对模拟激波的结构及其在传播过程中的演化进行的分析,提出了模拟激波的定位方法;基于所提出的定位方法,利用向长青提出的确定MHD激波局地参数的方法计算了模拟得到的激波与Rankine-Hugnoniot跃变关系的偏差.结果表明在激波传播到100Rs以后,激波对中前向快激波与Rankine-Hugnoniot关系的符合达到很高的程度,相对误差在10^-2数量级以内;并且在激波传播到150 Rs以后,相对误差在10^-3数量级以内.这个结果说明文中所使用的有限差分数值格式能较好地模拟激波.  相似文献   
45.
为了准确模拟飞行器在高速飞行时的瞬态气动加热状态,必须使用快速、高精度的计算机瞬态热能控制系统,对气动模拟试验的加热过程,实行快速、高精度的非线性动态控制.为此,传感器的快速、高精度"E-T"转换是一个必须解决的非常重要的问题.提出一种高速飞行器瞬态气动加热控制系统中传感器的快速、高精度"E-T"转换方法.该方法具有计算简单、转换速度快、校正精度高的优点,使用该方法实现了高速飞行器气动加热过程中温度场高速变化状态下的瞬态非线性动态控制.  相似文献   
46.
高空高速无人飞行器热控制系统设计   总被引:1,自引:0,他引:1  
针对飞行时间短、速度和高度变化快、表面温度波动大的无人飞行器UAV(Unmanned Aerial Vehicles)热控制系统设计难题,提出了一种可解决实际工程问题的热分析计算方法.即把热天工况、冷天工况和标准天工况作为设计/试验工况;采用参考温度法、高超音速工程预测法或计算流体动力学CFD(Computational Fluid Dynamics)数值模拟法,确定了飞行器表面温度分布,并把其作为后续热分析数学模型的外边界条件;分析结构热容量对瞬态热载荷的影响,建立与之相应的边值问题方程,并采用有限差分法求解;根据高空高速飞行特点及瞬态热载荷值,确定仪器设备舱调温系统方案.  相似文献   
47.
李鹏  陈坚强  丁明松  梅杰  何先耀  董维中 《航空学报》2021,42(Z1):726400-726400
国家数值风洞高超声速流动模拟软件HyFLOW的研制对打破国外同类软件的技术壁垒具有重要意义。与国外DPLR软件进行了对比研究,同时系统介绍了HyFLOW软件求解器的数值方法、物理化学模型以及壁面催化特性计算模型等主要方法,采用典型算例对有限催化模型进行了数值验证,最后基于LENS风洞试验146 mm返回器标模外形开展了高超声速气动热特性数值模拟。研究结果表明,HyFLOW软件在高超声速热化学非平衡流动模拟与评估方面的气动力计算精度高,与国外同类软件DPLR相当,同时其壁面催化条件下的气动热计算精度可靠,可信度高。  相似文献   
48.
为研究超声速气流中液体横向射流的破碎过程,采用脉冲背景光方法和VOF方法开展了实验和数值研究。为提高液体横向射流中气液界面和气流场特征捕捉的精确性,采用自适应网格技术对于气液界面、激波出现位置进行网格细化,计算得到了较为精细的气液界面、激波特征及涡系结构。研究结果表明:在低成本仿真模拟条件下,利用自适应网格计算得到的射流轨迹和轮廓与实验吻合较好,射流轨迹的最大误差为10%;射流初始段在超声速气流条件下,仍然存在一段高度约为1.9倍喷孔直径且圆柱形态保持较好的连续光滑液柱。随着喷注压降的升高,液柱的长度逐渐增大;主流气体流经液柱发生三维绕流,在射流附近和近壁面区域形成不断演化的反转涡对,反转涡对的形成加速了液体射流一次破碎过程。  相似文献   
49.
展向振荡对激波/湍流边界层干扰的影响   总被引:2,自引:2,他引:0  
孙东  刘朋欣  童福林 《航空学报》2020,41(12):124054-124054
周期振荡作为一种有效的壁面流动控制手段受到广泛关注,而其对激波/湍流边界层干扰的影响目前鲜有研究。本文采用高精度直接数值模拟(DNS)方法对马赫数2.9、12°激波入射角、强振荡下的激波/湍流边界层干扰进行了系统研究。通过与无振荡工况的定量比较,揭示了展向强振荡对干扰区内复杂流动结构的影响规律及作用机制,如分离泡尺度、物面压力脉动非定常特性、物面剪切的非定常特性及统计特征等。研究发现:在展向强振荡作用下,分离点位置提前,间歇区长度增大;同时由于分离泡内强黏性耗散的影响,展向振荡的穿透高度约为分离泡高度的4%,因而对流动结构不会产生实质影响。但展向强振荡会对壁面附近流动造成显著影响,如强振荡诱导的壁面展向速度远大于流向速度,造成流向剪切与展向剪切之间夹角的概率密度函数峰值从0°偏移到80°~90°之间。物面压力及剪切本征正交分解分析表明,展向振荡会导致模态能量从低阶模态向高阶模态转移,降低低频运动的能量占比,增强再附后Görtler涡等壁面附近旋涡结构的强度。  相似文献   
50.
超声速膨胀角入射激波/湍流边界层干扰直接数值模拟   总被引:2,自引:2,他引:0  
童福林  孙东  袁先旭  李新亮 《航空学报》2020,41(3):123328-123328
为了揭示膨胀效应对激波/湍流边界层干扰区内复杂流动现象的影响规律,采用直接数值模拟方法对来流马赫数2.9、30°激波角的入射激波与10°膨胀角湍流边界层相互作用问题进行了数值研究。系统地探讨了激波入射点分别位于膨胀角上游、膨胀角角点和膨胀角下游3种工况下膨胀角干扰区内若干基本流动现象,如分离泡、物面压力脉动及激波非定常运动、湍流边界层统计特性和相干结构动力学过程等。结果表明,激波入射点流向位置改变对分离区流向和法向尺度的影响显著,尤其是当激波入射点位于角点及其下游区域。研究发现,膨胀角干扰区内物面压力脉动强度急剧减小,分离区内压力波向下游传播速度将降低而在膨胀区内将升高,膨胀效应极大地抑制了分离激波的低频振荡运动。相较于入射激波与平板湍流边界层干扰,入射激波流向位置改变对膨胀角再附区速度剖面对数区及尾迹区影响显著,将导致其内层结构参数升高而外层降低,近壁区内将呈现远离一组元湍流状态的趋势。此外,流向速度脉动场本征正交分解分析指出,主模态空间结构集中在分离激波及剪切层根部附近而高阶模态以边界层内小尺度正负交替脉动结构为主。低阶重构流场结果表明,前者对应为分离泡低频膨胀/收缩过程而后者表征为分离泡高频脉动。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号