首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1070篇
  免费   223篇
  国内免费   122篇
航空   644篇
航天技术   252篇
综合类   76篇
航天   443篇
  2024年   9篇
  2023年   38篇
  2022年   48篇
  2021年   50篇
  2020年   72篇
  2019年   60篇
  2018年   56篇
  2017年   49篇
  2016年   42篇
  2015年   44篇
  2014年   43篇
  2013年   53篇
  2012年   58篇
  2011年   84篇
  2010年   61篇
  2009年   85篇
  2008年   76篇
  2007年   72篇
  2006年   59篇
  2005年   56篇
  2004年   38篇
  2003年   43篇
  2002年   20篇
  2001年   36篇
  2000年   20篇
  1999年   10篇
  1998年   18篇
  1997年   16篇
  1996年   12篇
  1995年   13篇
  1994年   16篇
  1993年   14篇
  1992年   15篇
  1991年   8篇
  1990年   5篇
  1989年   10篇
  1988年   5篇
  1986年   1篇
排序方式: 共有1415条查询结果,搜索用时 15 毫秒
31.
基于自适应容积粒子滤波的车辆状态估计   总被引:1,自引:1,他引:0  
针对车辆状态估计中由模型的强非线性、噪声的非高斯分布等相关因素导致估计精度下降甚至发散的问题,本文提出了基于自适应容积粒子滤波(Adaptive cubature particle filter,ACPF)的车辆状态估计器。首先基于非稳态动态轮胎模型,构建高维度非线性八自由度车辆模型。其次利用自适应容积卡尔曼滤波(Adaptive cubature Kalman filter,ACKF)算法更新基本粒子滤波(Particle filter,PF)算法的重要性密度函数,以完成自适应容积粒子滤波算法设计。利用车载传感器信息,运用ACPF算法实现对车辆的侧倾角、质心侧偏角等关键状态变量高精度在线观测。搭建Simulink-Carsim联合仿真平台进行了算法的验证,结果表明该算法状态估计精度高于传统无迹粒子滤波(Unscented particle filter,UPF)算法,且算法运算效率高于UPF算法,而传统PF估计值发散。研究结果为实现车辆动力学精准控制提供了理论支持。  相似文献   
32.
陈贵芳  郁丰  王润 《航天控制》2021,39(1):20-25
针对地磁定轨系统受地磁偏差影响精度不高的问题,提出了一种基于新息趋势的自适应地磁定轨算法(AKF).该算法将地磁偏差建模为随机游走模型,使之参与滤波.在滤波器运行过程中,依据新息的变化趋势,实时调整滤波器状态.以Swarm-A卫星的观测数据的实验表明,该算法和传统滤波器相比具有计算量低,收敛速度快,定位精度高等优点.通...  相似文献   
33.
旋转弹姿态的精确获取是旋转弹控制领域的一个研究重点,单纯将惯性/卫星组合导航方案应用于旋转弹上,无法快速而准确地获取弹体滚转姿态角。提出一种双轴地磁辅助惯性/卫星组合导航方法,该方法采用双轴地磁传感器、微机电(Micro Electro Mechanical System, MEMS)惯组和卫星导航组合测量方案,由序贯Kalman滤波算法完成对弹体姿态、速度和位置的估计。选取某旋转弹为仿真对象,仿真结果表明该方法在获得高精度速度、位置的同时,可快速完成弹体姿态准确估计。当地磁传感器精度为10mGs时,弹体姿态可在1s内快速收敛,且姿态精度优于0.5°(1σ)。该方法具有导航精度高、地磁标定简单、价格低廉的优点,在旋转弹导航方案上有一定的工程应用价值。  相似文献   
34.
MEMS陀螺仪由于小体积、低价格等优点在民用领域得到了广泛应用,但是由于工艺水平限制,MEMS陀螺仪测量数据中存在大量的随机误差。为了减小MEMS陀螺仪测量的随机误差、提高测量精度,提出了基于渐进遗忘多新息Kalman滤波的随机误差滤波方法。建立了MEMS陀螺仪随机误差的AR模型,在经典Kalman滤波中引入了多新息修正方法,并使用渐进遗忘因子削弱历史数据的积累干扰作用,从而给出了随机误差的渐进遗忘多新息Kalman滤波方法。同时,使用经典Kalman滤波和渐进遗忘多新息Kalman滤波对MEMS陀螺仪输出数据进行处理,并使用Allan方差分析各噪声含量,可知:渐进遗忘多新息Kalman滤波后的数据其QN噪声比经典Kalman滤波减小了2个数量级,ARW噪声减小了1个数量级,BI噪声减小了2个数量级,RRW噪声和RR噪声减小为原来的约1/5,实验结果验证了渐进遗忘多新息Kalman滤波在陀螺仪随机误差滤波中的先进性。  相似文献   
35.
重力数据处理对获取高精度重力异常值有着重要作用,是重力测量的核心技术。重力仪在搭载运动载体进行重力测量时,载体的高频振动对重力测量数据和GPS数据均会产生不可避免的干扰,导致提取的重力异常粗值含有大量高频噪声。围绕重力数据的处理方法这一核心技术,介绍了FIR低通滤波、零相移滤波、标准Kalman滤波、正反Kalman滤波4种滤波方法的基本原理,运用这4种方法处理了SAG捷联式重力仪的某次实际飞行测量数据,比对了基于SINS/GPS组合导航和SINS/DGPS组合导航的重力测量数据处理结果。通过对本次试验重复测线内符合精度进行比对,验证了4种方法的可行性和优劣性,同时验证了SAG重力仪的测量精度。  相似文献   
36.
为提高航空类发动机叶片的自动化磨抛精度,减小复杂曲面叶片加工轨迹控制误差,采用基于六维力传感器的机器人力/位混合控制策略,实现机器人磨抛轨迹的在线修正。搭建以Staubli机器人和ATI六维力传感器为核心部件的叶片磨抛验证平台,通过C++开发上位机,采集磨抛过程中六维力传感器信息并进行Kalman滤波。通过示教确定机器人运动轨迹,对机器人运动轨迹与力传感器信息进行采集分析,确定基于力/位混合控制可以实现机器人运动轨迹的在线修正,为复杂曲面的叶片磨抛轨迹控制提供一种解决方案。  相似文献   
37.
粒子滤波是一种基于贝叶斯估计理论和蒙特卡罗理论的实时目标跟踪方法,具有较为灵活的并行化跟踪方式,能够较好地维持跟踪目标的假设状态,具有较好的跟踪效果和鲁棒性。上升段飞行器目标飞行视频图像跟踪是火箭等目标飞行监控的重要阶段,但现阶段对飞行器上升段的视频图像跟踪主要依靠人工手动操作云台控制器,实现视频图像中的飞行器跟踪,跟踪图像存在跟踪滞后、画面抖动等现象,跟踪效果受人为因素影响较大。本文提出一种基于粒子滤波方法的上升段飞行器目标视频图像跟踪方法,建立飞行器目标粒子滤波跟踪模型实现对飞行器目标的识别和跟踪,在识别和跟踪的基础上建立云台控制模型,通过对云台的智能控制获得飞行器上升段的高质量图像。采用火箭发射的视频图像作为模型验证的实验数据,检验飞行器目标的跟踪效果。  相似文献   
38.
多目标跟踪的核粒子概率假设密度滤波算法   总被引:1,自引:0,他引:1  
庄泽森  张建秋  尹建君 《航空学报》2009,30(7):1264-1270
提出一种新的多目标跟踪算法:核粒子概率假设密度滤波算法(KP-PHDF)。算法的创新点在概率假设密度滤波算法(PHDF)的目标状态提取步骤,以粒子概率假设密度滤波算法为框架,并运用结合了mean-shift算法的核密度估计(KDE)理论进行概率假设密度(PHD)分布的二次估计、提取PHD峰值位置作为目标状态估计值。分析与多目标跟踪(MTT)仿真的结果表明,与现有序列蒙特卡罗概率假设密度滤波算法(SMC-PHDF)相比,在相同仿真条件下新算法的估计精度提高30.5%。  相似文献   
39.
自适应滤波算法在SINS/GPS组合导航系统中的应用研究   总被引:4,自引:0,他引:4  
范科  赵伟  刘建业 《航空电子技术》2008,39(3):11-15,33
以SINS/GPS组合导航系统为应用背景,对具有代表性的Sage自适应滤波和渐消卡尔曼滤波进行了研究,分析了这些方法在SINS/GPS组合导航应用中存在的问题,提出了适合工程应用的改进方法。改进的Sage自适应滤波主要对系统状态噪声协方差阵利用状态误差进行估计,更符合SINS/GPS组合导航系统的实际情况,提高了滤波稳定性。改进的渐消卡尔曼滤波采用矩阵因子的形式直接对状态预测协方差阵各分量进行不同程度的调节,使调节更趋合理。此外,改进算法增加了对观测粗差的处理,降低了观测粗差对滤波结果的影响。最后,用实际跑车试验验证了改进方法的有效性。  相似文献   
40.
该课题将GPS差分定位技术引入到弹射救生试验测试中,产生了新的弹射试验测试方法,提高了测试水平和测试的自动化程度.该方法将静态差分定位的后处理手段和动态差分定位测试有机结合,解决了动态精确定位、测速问题.在后处理中同时使用纵向平滑和横向平滑的滤波算法,建立了加速度"当前"统计模型的卡尔曼自适应滤波算法,有效提高了测试数据的后处理的抗干扰能力和测试精度.并通过大量的试验研究对系统进行了验证和分析.结果表明将GPS用于弹射试验测试是一种可行的方法,同时该课题的研究成果可推广到空降空投的试验测试中.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号