首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1717篇
  免费   443篇
  国内免费   181篇
航空   1386篇
航天技术   345篇
综合类   193篇
航天   417篇
  2024年   4篇
  2023年   64篇
  2022年   76篇
  2021年   92篇
  2020年   99篇
  2019年   88篇
  2018年   61篇
  2017年   82篇
  2016年   91篇
  2015年   91篇
  2014年   105篇
  2013年   54篇
  2012年   99篇
  2011年   103篇
  2010年   80篇
  2009年   89篇
  2008年   77篇
  2007年   90篇
  2006年   82篇
  2005年   69篇
  2004年   65篇
  2003年   68篇
  2002年   35篇
  2001年   54篇
  2000年   39篇
  1999年   41篇
  1998年   37篇
  1997年   44篇
  1996年   57篇
  1995年   52篇
  1994年   38篇
  1993年   34篇
  1992年   38篇
  1991年   22篇
  1990年   33篇
  1989年   36篇
  1988年   17篇
  1987年   11篇
  1986年   8篇
  1985年   5篇
  1984年   4篇
  1983年   1篇
  1982年   4篇
  1981年   1篇
  1980年   1篇
排序方式: 共有2341条查询结果,搜索用时 203 毫秒
971.
结合风洞试验介绍了LSRP-90加速度迎角传感器的应用,具有一定的实用意义。  相似文献   
972.
在一湍流射流自模区的中心线上,沿流向的温度空间相关和差分量的统计关系由两种方法获得。一是用两根平行并在流向分离的冷丝直接测量;另一方法是通过计算关于时间的相关和分(根据来自下游位置的冷线信号),以及Taylor假设法获得关于空间的以应量。本文对有关的时,空量,如相关系数,均方根值,偏斜和平坦因子以及谱密度函数,作了对比和讨论。可以认为,Taylor假庙所测量的流动中是相当合理有和有用的。  相似文献   
973.
利用中间相沥青纤维的自粘结性和沥青大分子沿纤维轴高度择优取向的特点,通过热压方法制备高导热块体碳材料。在纺丝和氧化条件不变的情况下,主要考察了中间相沥青的熔融纺丝温度对纤维性能和目标材料性能的影响。结果显示:(1)熔融纺丝温度越高,中间相沥青纤维的直径越大;(2)在合适的纺丝温度下所得的纤维经氧化后热压制得材料具有较高的弯曲强度、密度、热导率以及较低的电阻率。选取纺丝温度为308℃,所纺中间相纤维直径为20μm,氧化后经热压所得材料的密度、弯曲强度、热导率和电阻率分别为2.02 g/cm3、128.7 MPa、597 W/(m.K)和1.25μΩ.m。  相似文献   
974.
孔玮  罗纪生 《航空动力学报》2016,31(10):2500-2506
用数值模拟的方法研究了二维壁面的表面粗糙度下Stokes层的非线性亚临界不稳定性问题.发现当粗糙度高度极小时,响应系数曲线与线性情况就会产生较大偏离.随着粗糙度高度的增加,扰动1阶谱会出现亚谐波的成分,粗糙度高度的进一步增加使扰动1阶谱进入混乱阶段,显示出亚临界失稳的过程.根据粗糙度高度与扰动1阶谱演化的特征关系,定义了临界粗糙度高度,并给出临界粗糙度高度与雷诺数的关系曲线.结果表明:临界粗糙度高度随着雷诺数增大而减小.雷诺数为300左右时,微米量级的粗糙度高度就可能引起Stokes层的亚临界失稳,发生转捩,由此也可以给出实验中观测到的转捩通常都发生在雷诺数为300附近的原因.   相似文献   
975.
航天器再入大气层热力分析   总被引:1,自引:0,他引:1  
罗祖分  宋保银 《航空动力学报》2016,31(10):2507-2514
以OREX(orbital reentry experiment vehicle)的飞行试验数据和相关的CFD数值模拟结果为基础,采用传热理论及相关公式,分析计算了OREX再入大气层过程中的轨迹,驻点处热流密度非平衡假设和平衡假设下的换热问题.所计算的轨迹、热流密度非平衡假设下计算的驻点温度和热流密度值同试验数据及相关的CFD数值结果取得了很好的一致,相应的计算方法可作为航天器驻点热力分析的通式.然而在平衡假设条件下,尽管计算所得到的驻点热流密度与之前的CFD数值结果差别不大,但这种情况下计算得到的温度与试验数据不符,这应归结于计算的热流密度结果对驻点处温度变化的不敏感.比较非平衡假设和平衡假设下的换热计算结果表明,对于航天器再入过程中的热力探讨不能仅仅满足于热流密度分析,对温度的考察或许更重要.   相似文献   
976.
温度比对旋转直肋双通道换热特性的影响研究   总被引:1,自引:1,他引:0       下载免费PDF全文
崔欣超  邓宏武  李洋  田淑青 《推进技术》2016,37(11):2009-2016
为了研究旋转涡轮叶片内部冷却通道的换热特性,将叶片内冷通道简化为带90°直肋的旋转双流程方通道,通过旋转加热实验的方式研究了温度比对旋转直肋双通道换热特性的影响。实验进口雷诺数范围为1×104~5×104,旋转数范围为0~2.02,实验平均温度比分别为0.11,0.16,0.20。研究结果表明,与光滑通道实验数据相比,90°直肋削弱了旋转对换热的影响,同时破坏第二通道后缘面附近的不稳定二次流,造成后缘面换热弱于前缘面;温度比是通过改变冷却空气物性与通道内浮升力对旋转通道换内热特性产生影响,温度比的提高引起的物性变化对通道换热具有削弱作用,静止情况下温度比0.20对应的换热与温度比0.11相比,被削弱程度可达16%,而浮升力对换热具有增强作用;低旋转数下,由温度比引起的浮升力作用与物性作用相互中和,高旋转数下温度比的增大对通道换热特性的增强作用更加明显,并且第二通道换热特性受温度比变化影响较第一通道小。  相似文献   
977.
直流喷射首次破碎的形变过程研究   总被引:2,自引:2,他引:0       下载免费PDF全文
为深入了解直流喷射过程中射流柱的细部结构以及其脱落过程,利用LES结合VOF的方法,对静止大气中垂直射流现象进行模拟。模拟得到的液相喷雾结构和试验结果能够很好地吻合。通过计算观察得到射流柱进入到大气中后由于Rayleigh-Taylor(RT)不稳定性迅速形成伞状的头部,头部的边缘在不断变薄失稳的过程中脱落形成液带,液带脱落产生的液滴具有等距性,间距为0.106mm,并在伞状边缘的下方形成一个气涡,气涡与上游的射流柱相互作用,促进射流柱表面的脱落。射流柱表面由于Kelvin-Helmholtz(K-H)表面波的作用呈现鱼鳞状的结构,并导致射流柱整体断裂、破碎,其表面波波长由初始的0.26mm迅速增长到0.78mm。  相似文献   
978.
为给未来高推质比航空发动机燃烧室出口温度分布测试作技术储备,以某单管燃烧室为研究对象,采用可调谐半导体激光吸收层析成像(TDLAT)技术,在0.5~0.8 MPa压力环境下,研究了基于波长调制(WMS)技术的燃烧室出口温度分布测试方法的工程适用性。结果表明:通过多光路正交测量的方式,利用扣除背景的归一化波长调制光谱模型、变量轮换迭代反演及计算层析(CT)技术,可以实现具有时空分辨性的燃烧室出口温度分布式测量;场分布重建结果能够较正确地反映出燃气温度和H2O气体积分数随进口参数变化的趋势与特征;受燃烧流场的不均匀性、光谱模型建立与光谱参数标定的不准确、反演与重建算法的不完善等因素的影响,TDLAS测温均值低于热电偶测量结果,相对误差在15%~23%之间,测量数据的准确度距工程应用需求还有一定的差距。  相似文献   
979.
针对航空发动机涡轮盘低循环疲劳寿命受交变热应力影响的问题,对某型高压涡轮盘服役过程的温度场变化情况进行 了研究。根据某型发动机高压涡轮盘试车过程中实测的随时间变化的温度分布,采用有限元方法分析了轮盘温度变化对不同考 核部位应力水平的影响,对发动机工作状态下各考核部位的循环应力进行了计算。制定了试验方案,设计了试验装置,在旋转试 验器上进行了涡轮盘在高温状态下的低循环疲劳试验,按照安全寿命法确定了盘心和螺栓孔部位的安全寿命。结果表明:温度变 化对轮盘考核部位应力的影响明显,瞬态温度沿径向呈“V”型分布,导致螺栓孔部位应力水平比稳态温度分布下的提高了25.9%, 使其成为涡轮盘的限寿部位;轮盘失效模式为低循环疲劳破坏,裂纹起源于螺栓孔的6、12点钟方向,沿径向扩展导致轮盘失效。  相似文献   
980.
为探究旋流杯内流动不稳定现象,针对带不同出口张角文氏管的旋流杯冷态流场进行了大涡模拟,并结合PIV试验结果进行了验证。研究结果表明,文氏管出口张角对时均流场的影响主要在旋流杯内部区域,对下游恢复区域基本无影响;旋流杯瞬态流场中存在旋进涡核(PVC)和小涡旋结构,出口张角对PVC的运动频率和形态基本无影响,对小涡旋结构影响较大,相同Q值下,56°张角旋流杯方案的小涡旋结构更丰富;经本征正交分解方法(POD)分析,旋流杯的强脉动结构为PVC和小涡旋结构。56°张角旋流杯方案的小涡旋结构能量更强,脉动幅度较大,能更好地对燃油进行剪切破碎,有利于强化雾化效果。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号