首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2061篇
  免费   565篇
  国内免费   269篇
航空   2282篇
航天技术   151篇
综合类   320篇
航天   142篇
  2024年   20篇
  2023年   102篇
  2022年   105篇
  2021年   127篇
  2020年   115篇
  2019年   102篇
  2018年   98篇
  2017年   119篇
  2016年   147篇
  2015年   128篇
  2014年   116篇
  2013年   109篇
  2012年   136篇
  2011年   140篇
  2010年   147篇
  2009年   118篇
  2008年   119篇
  2007年   81篇
  2006年   74篇
  2005年   79篇
  2004年   70篇
  2003年   60篇
  2002年   48篇
  2001年   43篇
  2000年   52篇
  1999年   33篇
  1998年   40篇
  1997年   56篇
  1996年   35篇
  1995年   42篇
  1994年   43篇
  1993年   38篇
  1992年   40篇
  1991年   25篇
  1990年   28篇
  1989年   33篇
  1988年   17篇
  1987年   2篇
  1986年   4篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
排序方式: 共有2895条查询结果,搜索用时 31 毫秒
51.
侯晓亭  王锁芳  张凯  夏子龙 《推进技术》2020,41(10):2197-2203
为了探索翅片-管复合式减涡器的翅片安装位置对共转盘腔径向内流压力损失的影响规律,对不同转速、翅片周向位置及安装角度下的去旋系统开展了数值研究,得到了不同工况下共转盘腔径向内流的流场结构及压力损失分布曲线。研究结果表明:减涡管能引导流体径向流入,并降低流体的旋流比;相比于管式减涡器,翅片-管复合式减涡器能明显降低盘腔内的总压损失;在不同旋转雷诺数下,翅片的周向安装位置α及安装角β均存在最佳值;在中、高旋转雷诺数下,最佳值分别为α=9°,β=30°,最佳结构下总压损失较基础模型低40%左右;改变翅片周向位置及安装角度可以明显改变气流进入减涡管的角度,在较优情况下,可以减小流体流入减涡管的阻力及在减涡管内的流动阻力,整体上减小了盘腔内总压损失。  相似文献   
52.
展向振荡对激波/湍流边界层干扰的影响   总被引:2,自引:2,他引:0  
孙东  刘朋欣  童福林 《航空学报》2020,41(12):124054-124054
周期振荡作为一种有效的壁面流动控制手段受到广泛关注,而其对激波/湍流边界层干扰的影响目前鲜有研究。本文采用高精度直接数值模拟(DNS)方法对马赫数2.9、12°激波入射角、强振荡下的激波/湍流边界层干扰进行了系统研究。通过与无振荡工况的定量比较,揭示了展向强振荡对干扰区内复杂流动结构的影响规律及作用机制,如分离泡尺度、物面压力脉动非定常特性、物面剪切的非定常特性及统计特征等。研究发现:在展向强振荡作用下,分离点位置提前,间歇区长度增大;同时由于分离泡内强黏性耗散的影响,展向振荡的穿透高度约为分离泡高度的4%,因而对流动结构不会产生实质影响。但展向强振荡会对壁面附近流动造成显著影响,如强振荡诱导的壁面展向速度远大于流向速度,造成流向剪切与展向剪切之间夹角的概率密度函数峰值从0°偏移到80°~90°之间。物面压力及剪切本征正交分解分析表明,展向振荡会导致模态能量从低阶模态向高阶模态转移,降低低频运动的能量占比,增强再附后Görtler涡等壁面附近旋涡结构的强度。  相似文献   
53.
流场可压缩性对涡相互作用影响的数值研究   总被引:1,自引:1,他引:0  
郑忠华  范周琴  王子昂  余彬  张斌 《航空学报》2020,41(2):123295-123295
涡相互作用作为冲压发动机喷注装置的典型抽象流动现象,研究其可压缩性影响对于认识包含化学反应的真实燃料喷射场具有一定基础理论价值。基于经过数值验证的可压缩Navier-Stokes算法与压力泊松方程初始条件设置方法研究流场可压缩性对涡相互作用演化过程的影响。结果表明,以较高涡旋马赫数表征的可压缩性在改变涡对形态的同时,具有延缓涡旋相互靠近,迟滞融合进程的作用。关于涡对系统开始融合的临界条件,可压缩相互作用开始的临界展弦比与无量纲时间相比于低速涡对明显提高。为在无量纲时间意义下统一不同马赫数涡对相互作用的进程,从涡心密度随时间变化规律出发在不可压涡对特征时间的基础上,初步构建了考虑可压缩性的时间尺度修正关系。  相似文献   
54.
基于RANS/LES混合方法的分离流动模拟   总被引:1,自引:1,他引:0  
陈浩  袁先旭  毕林  华如豪  司芳芳  唐志共 《航空学报》2020,41(8):123642-123642
飞行器在大迎角、快速俯仰机动时,流场中含有大尺度、非定常的涡结构,传统雷诺平均Navier-Stokes (RANS)模型不能准确模拟流场结构,根据国际上相关研究的发展趋势,需要采用混合RANS/大涡模拟(LES)模型来对复杂分离流动进行准确模拟。本文对基于分区混合与湍流尺度混合的双重RANS/LES混合计算模型进行发展与应用。通过典型简化模型的静、动态湍流大分离流动,测试和验证所采用的脱体涡模拟(DES)类方法,重点研究改进的延迟DES (IDDES)模型在动态问题应用中的正确性和有效性,并对所采用的数值模拟方法和相应的计算软件的可靠性、鲁棒性以及精度进行了考核验证。典型算例包括超声速圆柱底部流动、跨声速方腔流动、NACA0015机翼深失速分离涡模拟等。计算表明:发展的IDDES类混合计算模型可有效解决对数层不匹配的问题;对于定态非定常分离流动,DES、DDES、IDDES等模型计算结果差别不大,随着流动的非定常特性增强,IDDES模型的优势逐渐显现;对于动态非定常分离流动,则需要采用IDDES类模型。  相似文献   
55.
室火轰燃的大涡模拟   总被引:9,自引:0,他引:9  
采用一套修正的适用于低马赫数浮力流的N-S方程组来描述火灾场,运用Smagorinsky亚格子模型的大涡模拟方法对室内池火的轰燃发展过程进行了数值模拟,把模拟与实验结果进行了对比和分析。结果表明,该方法能较好地预测轰燃。同时模拟结果显示火焰区向房间后部偏转稍大,近壁处温度预测的误差大一些,随着亚格子模型的不断完善和计算能力的提高,用该技术来预测轰燃现象会更加准确。  相似文献   
56.
本文首次将新型丝状暴露电极DBD等离子激励器应用于大迎角下细长体非对称涡控制.丝状暴露电极的材料的选择对DBD推力以及推力效率至关重要,通过地面精细推力测量对丝状暴露电极等离子体激励器进行了优化,结果表明,本文研究材料中采用钨丝作为暴露电极,其推力效率最优;且随着电极直径从d=0.3 mm减小到d=0.08 mm,DB...  相似文献   
57.
地面效应对尾涡消散的影响研究   总被引:2,自引:0,他引:2  
采用大涡模拟方法可以分析和计算近地阶段尾涡消散和运动规律,但模型繁琐、计算复杂。本研究基于镜像涡方法建立了形式相对简单、计算迅速的近地尾涡运动模型和消散模型,计算结果与激光雷达测量数据和大涡模拟数据的偏差都不超过5%,满足动态尾涡间隔研究的需要。  相似文献   
58.
在超声速燃烧室内常采用凹槽增强燃料与空气的混合,实现火焰稳定,本文采用大涡模拟方法对开式凹槽流场进行了数值模拟研究,计算采用Smagorinsky 亚网格模型模拟小尺度涡的作用.数值模拟结果给出了凹槽流动的自激振荡的发展过程,以及凹槽流动中拟序结构的演变过程,如涡的卷起、增长,涡与涡之间的合并、破碎等,计算得到的凹槽波动的峰值频率和理论结果一致.  相似文献   
59.
屠宝锋  胡骏  赵勇 《航空动力学报》2009,24(7):1616-1621
基于三维非定常欧拉方程和三维激盘模型发展了一种用于研究轴流压气机动态失速过程的三维计算方法.利用该计算方法研究了某型高压压气机第一级的动态失速过程,并就转子总静压升特性的三种不同径向分布对失速过程的影响进行了分析.计算结果表明该方法能够反映出压气机的三维动态失速过程、失速团的三维空间结构,并能有效地表现出转子沿径向的特性变化对压气机气动稳定性的影响,而且还能够用于判断压气机的危险截面.   相似文献   
60.
涡轮盘多轴低循环疲劳寿命可靠性分析   总被引:8,自引:0,他引:8  
高阳  白广忱  张瑛莉 《航空学报》2009,30(9):1678-1682
多轴低循环疲劳是航空发动机涡轮盘的主要失效模式,应用多轴疲劳寿命预测的等效应变模型和临界面模型对某涡轮盘中心孔的疲劳寿命进行了预测,并与试验寿命进行了对比,得出等效应变模型预测结果均偏于危险,并且误差较大,而临界面模型误差较小,尤其拉伸型破坏的SWT模型误差在10%以内。进一步选取SWT模型进行了涡轮盘的寿命可靠性分析,鉴于多轴疲劳试验复杂、费用高并缺少统计数据,利用现有单轴疲劳试验数据将疲劳性能参数表示为标准正态随机变量的函数,将SWT模型随机化建立多轴疲劳寿命概率模型,得到可靠度0.998 7的涡轮盘寿命,与试验估计给出的技术寿命较为接近。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号