首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1132篇
  免费   282篇
  国内免费   188篇
航空   1018篇
航天技术   144篇
综合类   165篇
航天   275篇
  2024年   12篇
  2023年   48篇
  2022年   64篇
  2021年   50篇
  2020年   57篇
  2019年   57篇
  2018年   39篇
  2017年   59篇
  2016年   72篇
  2015年   63篇
  2014年   84篇
  2013年   55篇
  2012年   88篇
  2011年   62篇
  2010年   48篇
  2009年   63篇
  2008年   66篇
  2007年   44篇
  2006年   44篇
  2005年   46篇
  2004年   35篇
  2003年   42篇
  2002年   32篇
  2001年   21篇
  2000年   24篇
  1999年   20篇
  1998年   33篇
  1997年   27篇
  1996年   35篇
  1995年   31篇
  1994年   32篇
  1993年   34篇
  1992年   32篇
  1991年   26篇
  1990年   16篇
  1989年   13篇
  1988年   24篇
  1987年   2篇
  1986年   2篇
排序方式: 共有1602条查询结果,搜索用时 31 毫秒
911.
隔离段抽吸引起的激波迟滞现象研究   总被引:4,自引:4,他引:0       下载免费PDF全文
为了研究壁面抽吸条件下隔离段流动迟滞现象,采用数值模拟和理论分析相结合的方法,模拟反压升高再降低过程,对隔离段的激波形态进行了研究。基于Zhukoski提出的中等雷诺数下(3×10~4Re_δ1.2×10~6)分离区压力与马赫数的量化关系,发展了无控制措施条件下激波串首道激波的理论模型,发现来流马赫数大于2.0时激波串首道激波反射类型为规则反射,且不会出现激波反射迟滞现象。而壁面抽吸使首道激波固定在抽吸缝位置,导致激波串首道激波强度随反压升高不断增强,边界层分离角和激波角不断增大,从而进入Von Neumann准则的双解区甚至马赫反射区,在升高及降低反压的过程中隔离段出现流动迟滞现象。研究结果进一步揭示了壁面抽吸引起的流动迟滞现象不仅包含常规RR?MR激波反射迟滞,而且包含了一种新的迟滞现象——边界层分离迟滞。  相似文献   
912.
大径向落差长度比中介机匣气动特性研究   总被引:3,自引:2,他引:1       下载免费PDF全文
辛亚楠  李家军  韩阳  赵勇 《推进技术》2017,38(4):808-814
为了进一步揭示大径向落差长度比中介机匣的气动特性,采用全三维数值模拟方法对径向落差长度比ΔR/L=0.5的中介机匣的流动与损失特征进行了研究。结果表明大径向落差长度比中介机匣通道内轮毂面存在较大的逆压梯度,支板-轮毂角区容易发生流动分离,加之附面层迁移等复杂流动的影响,导致中介机匣的总压损失较大为3.8%,轮毂25%流量层,主流50%流量层及机匣25%流量层的总压损失分别为2.7%、1.9%和11.7%。进一步的研究发现中介机匣流场对马赫数和支板厚度弦长比的变化较为敏感,特别是轮毂面附近的总压损失会随马赫数和支板厚度弦长比的增大显著增加,马赫数从0.25增大到0.48时,轮毂面总压损失相对增大52%;支板厚度弦长比从0.16增加到0.27时,轮毂面总压损失相对增大93%。  相似文献   
913.
基于DDES方法的叶栅分离旋涡的非定常流动数值研究   总被引:3,自引:1,他引:2       下载免费PDF全文
为了研究叶栅分离旋涡的非定常流动特性,选取亚声速叶栅为研究对象,进行了基于延迟分离涡模拟方法 (DDES)的非定常数值模拟。针对进口Ma0.3的情况,对比分析了进口攻角、叶栅稠度、叶片弯角、叶片中弧线弯度分布和叶片厚度等因素对于叶栅分离旋涡运动的影响。结果表明,当攻角增大时,尾迹附近流场会逐渐由定常模式转化为非定常对涡脱落模式,同时对涡脱落频率不断减小;随着攻角的进一步增大,叶背分离强度不断增加,叶背分离涡开始单独脱落,并主导流场旋涡运动。强烈的叶背分离涡脱落引起了叶片气动力的剧烈脉动,其幅值是小攻角状态下由尾迹对涡脱落引起叶片气动力脉动的30倍以上。叶栅几何参数的改变对于流场旋涡运动同样有很大影响,流场同样呈现出"定常尾迹"、"对涡脱落"、"叶背分离涡脱落"这三种主要的旋涡运动形式之一。叶背分离点的相对位置则是影响旋涡非定常运动形式和旋涡脱落频率的主要内在因素。  相似文献   
914.
静子开缝高度对高负荷两级风扇性能的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
为了研究静子开缝高度对高负荷风扇性能的影响,根据风扇的流动特点,设计了在第二级静子叶根处开缝的流动控制方案,并提出了多种不同缝隙高度的静子开缝方案,通过计算对采取各种方案下的流场进行了分析。研究表明,缝隙射流可阻断静子吸力面气流的径向流动,吹除缝隙出口后的低速气流,从而达到扩稳的目的,设计转速下方案A的风扇稳定工作范围扩大了7.1%;在不同工况下静子开缝对角区气流分离和流动损失均有一定的控制效果,而在堵塞工况下,由于静子通道内流动分离较小,开缝射流的优点没有得到充分体现;在所研究的范围内,当开缝高度较低时,缝隙射流对角区分离和流动损失的控制能力较弱,而开缝高度的增加对控制叶根角区气流分离有利,对控制较大叶高处吸力面的气流分离不利。  相似文献   
915.
徐华  孙冰  王太平 《推进技术》2017,38(8):1812-1818
为了研究激波对气膜冷却效果的破坏机理,并消除这种影响,以平板壁面为基础设计了一种带有卸压槽的壁面结构。通过数值计算研究了主流马赫数为3.2,冷流马赫数分别为1.0、0.6和0.4三种工况下开槽壁面对激波破坏的抑制作用。结果表明,在有激波入射的条件下,开槽壁面比平板壁面具有更好的流场结构,可使激波导致的近壁气膜的分离区最多减小至原来的三分之一,并有效减弱气膜入射后在肩部产生的反向涡旋对,这很好地抑制了气膜的卷吸和与主流的掺混。计算显示开槽壁面最大能够使壁面冷却效率提高6%,且这种作用效果与通过卸压槽的气流流量大小有关。此外仿真结果表明,在相同条件下波前卸压较波后卸压效果更好。通过合理安排卸压槽位置及槽面宽度,可以将总压损失控制在合理范围内。  相似文献   
916.
等离子体合成射流改善翼型气动性能实验研究   总被引:3,自引:2,他引:1       下载免费PDF全文
李洋  梁华  贾敏  宋慧敏  李军  魏彪  吴云 《推进技术》2017,38(9):1943-1949
等离子体合成射流(PSJ)是一种新型主动流动控制激励器,目前研究大多集中于激励特性,对于流动控制的应用研究还明显不足。为了深入探究PSJ翼型流动分离的控制能力与规律,以高升力翼型为载体,在翼型前缘施加等离子体合成射流激励(PSJA),研究激励器对升力特性的影响。结果表明:在翼型前缘施加PSJA,可以有效抑制流动分离;近失速迎角状态下,各个激励频率下都能产生良好的控制效果;过失速迎角状态下,低频效果最好,随激励电压增加,有效频率范围变宽;激励效果随来流速度增加而减弱,当来流速度20m/s时,翼型的失速迎角提高5°,最大升力系数提高8.1%;当来流速度为40m/s时,失速迎角提高3°,最大升力系数提高4.5%。  相似文献   
917.
针对大扩张比喷管地面试验过程中分离流动现象,基于数值方法研究分离状态流场特征,分析了分离位置与喷管入口参数的关系,并与经验公式进行了对比。在此基础上,开展被动引射方案的仿真计算,分析引射筒长度、直径等参数对喷管流态的影响。计算结果表明,大扩张比喷管地面试验过程由于逆压梯度产生分离流动,数值计算流场及分离位置与经验公式结果接近;通过引射筒的被动引射可以实现地面试验时喷管满流状态,流场受引射筒长度和直径等参数影响。此研究结果可为大扩张比喷管地面试验设计提供参考。  相似文献   
918.
919.
为降低进气畸变对压气机气动性能的影响,设计了 1种压气机非轴对称静子,并对设计方案开展数值模拟研究。仿真结果表明:在最高效率工况下,非轴对称静子能减小畸变区静叶的流动分离,缩小叶尖低密流区域,提升通道的流通能力,压气机的最高效率约增加 0.46%,此外,畸变区叶片进口气流角得到改善,在 90%叶高处的峰值气流角降低 2.5°;在近失速工况下,非轴对称静子能降低畸变区静叶上半叶高的扩压因子,缩小分离范围,虽略微恶化了叶根区域流场,但压气机整体气动性能与流通能力有所提升,能够在更低的流量下工作,稳定裕度增加 31.5%。  相似文献   
920.
文章提出了一种基于热刀切割UHMWPE绳的轻小型锁紧释放机构,质量仅为150g,高度只有27mm,用于拍摄“天问一号”着陆器与巡视器合影。设计卡爪装置对WIFI相机进行卡紧固定,采用UHMWPE绳对卡爪装置进行捆绑紧固,设计绳索预紧和收紧装置实现绳索拉紧,通过热刀组件熔断UHMWPE绳实现WIFI相机释放。为验证机构可靠性和对复杂空间环境适应性,开展了UHMWPE绳蠕变测试、抗辐照试验、机构解锁测试、力学试验等专项测试,结果表明该锁紧释放机构能够稳定锁紧和释放分离相机,具有体积小、质量轻、耐辐照、高可靠等特点。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号