首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   666篇
  免费   133篇
  国内免费   75篇
航空   567篇
航天技术   61篇
综合类   93篇
航天   153篇
  2024年   4篇
  2023年   22篇
  2022年   36篇
  2021年   30篇
  2020年   32篇
  2019年   30篇
  2018年   27篇
  2017年   29篇
  2016年   22篇
  2015年   28篇
  2014年   35篇
  2013年   17篇
  2012年   30篇
  2011年   38篇
  2010年   36篇
  2009年   50篇
  2008年   34篇
  2007年   25篇
  2006年   37篇
  2005年   43篇
  2004年   27篇
  2003年   30篇
  2002年   21篇
  2001年   34篇
  2000年   18篇
  1999年   18篇
  1998年   20篇
  1997年   6篇
  1996年   19篇
  1995年   11篇
  1994年   13篇
  1993年   12篇
  1992年   8篇
  1991年   13篇
  1990年   10篇
  1989年   5篇
  1988年   2篇
  1987年   2篇
排序方式: 共有874条查询结果,搜索用时 31 毫秒
611.
液体火箭发动机液膜冷却研究综述   总被引:3,自引:0,他引:3  
唐亮  李平  周立新 《火箭推进》2020,46(1):1-12
液膜冷却是液体火箭发动机的一种重要的冷却方式,具有冷却结构简单、冷却能力强等优点,一般与其他冷却方式结合,实现对发动机的冷却。液膜冷却对发动机的热防护可靠性和发动机比冲均有重要的影响。通过追踪国内外液膜冷却研究现状,从液膜的形成、中心气流对液膜的夹带作用、液膜冷却分析模型以及液膜冷却对发动机性能的影响等方面,梳理了液膜冷却的研究文献,总结了当前研究中存在的不足,并从冷却剂注入结构、中心气流对液膜夹带特性、液体火箭发动机液膜冷却计算方法和推力室冷却结构/技术方案等方面提出研究展望。  相似文献   
612.
采用3K斜纹碳布和12K无纬布铺层的针刺预制体,经化学气相渗透法(CVI)及先驱体浸渍裂解法(PIP)最终成型C/C-SiC复合材料,采用长时间氧乙炔烧蚀实验及高速颗粒冲蚀实验进行复合材料长时间抗氧化及抗冲刷性能测试,研究影响其抗烧蚀(冲蚀)行为的主要因素。结果表明:经过600 s氧乙炔烧蚀后,C/C-SiC复合材料发生一定程度的烧蚀,采用无纬布预制体较采用斜纹碳布预制体成型的C/C-SiC复合材料的线烧蚀率、质量烧蚀率、烧蚀深度低;两种材料颗粒冲蚀实验结果一致,试样冲刷面呈现明显的机械冲刷的特征,在短短的10 s内,冲刷坑深度能达到7.21~7.25 mm,材料失效严重;而没有颗粒气流冲刷实验时,材料冲蚀程度显著下降。C/C-SiC复合材料在实际使用过程中一般受到气流压力、粒子冲击及高温氧化的综合作用,粒子冲击引起的机械剥蚀比长时间高温氧化产生的热化学烧蚀对C/C-SiC复合材料的失效影响更大,直接影响材料的使用性能。  相似文献   
613.
在细观尺度下,基于逐渐损伤理论,建立了一种三维四向C/C复合材料高温强度预测模型。模型考虑了纤维束挤压后的截面形状、单胞的周期性以及纤维束和基体的脱黏等因素,引入考虑温度的三维Hashin失效准则进行单元的失效判定,预测了三维四向C/C复合材料室温和有防氧化保护700 ℃的拉伸强度。为了将模型发展到高温氧化环境,建立了考虑氧化速率的纤维束高温氧化环境力学性能退化模型,结合纤维束和单向板力学性能等价性原理,实现了无防氧化保护下三维四向C/C复合材料700 ℃拉伸强度的预测。研究了切边加工对三维四向复合材料强度的影响,建立了考虑切边宽度的切边三维四向复合材料强度预测模型,预测了有、无防氧化保护切边宽度为18 mm的三维四向C/C复合材料拉伸强度。结果表明:对非切边试验件在室温、有防氧化涂层700 ℃和无防氧化涂层700 ℃的预测误差分别为5.51%、7.20%和7.13%,拉伸过程的应力-应变曲线与试验结果吻合度较好;对切边试验件在室温和有防氧化涂层700 ℃的预测误差分别为0.88%和4.53%。多种类的算例表明预测模型合理、可靠。   相似文献   
614.
侯圣文  张海  吴锋  田小江  周杰 《航空动力学报》2019,34(10):2140-2148
为了研究水膜对风扇气动特性的影响,综合水滴碰撞壁面的参数,应用水膜方程求得叶片表面水膜方均根厚度。在数值计算中引入砂砾粗糙度模型来模拟水膜引起的叶片表面粗糙度变化。针对不同吞雨量和水滴直径条件开展数值计算。计算结果表明:水膜主要分布在叶片压力面中的前缘和叶根区域,其厚度和沉积面积随着吞雨量的增加而增大,并且水膜的存在会导致风扇压比和温比的降低。例如,当水滴直径为1000μm、吞雨量为5%时,水滴沉积面积为0.0758m2,占叶片压力面总表面积的33.91%。   相似文献   
615.
热障涂层是航空发动机热端部件的重要功能材料,其强度与寿命分析技术是热障涂层应用基础研究的重点。涂层的提前失效将使金属基体暴露在高温燃气环境中,加速材料性能的退化,严重影响飞行安全。合理的强度评判标准以及寿命预测模型可以有效减小服役过程中热障涂层失效,提高发动机可靠性。介绍了热障涂层的损伤机理、寿命分析技术的发展现状,展望了航空发动机热障涂层寿命分析技术的发展趋势。  相似文献   
616.
以液氢膜态沸腾换热为对象,收集并分析文献中涉及液氢膜态沸腾换热的实验数据。通过充分的对比研究,考核3种典型关系式针对液氢膜态沸腾换热预测的适用性与预测精度,建立可预测微重力下液氢膜态沸腾换热热流密度的数学关系式。研究发现:在地面重力下,加热面几何结构、朝向似乎不会对沸腾换热热流密度产生明显影响,均可采用Breen & Westwater公式预测其传热系数;而重力水平会对膜态沸腾换热产生较大影响,且不同重力下换热热流密度之比与重力比之间满足幂指数的关系;依据该关系式可以求解微重力下液氢的膜态沸腾换热热流密度,预测误差控制在15%以内。   相似文献   
617.
双组元推力器在短脉冲工况下比冲出现明显下降。为了从推进剂雾化角度研究其原因,搭建了离心喷嘴脉冲工作冷流实验平台,使用机械式脉动流量发生器使喷嘴工作在脉冲模式。实验中测量了离心喷嘴的动态压降和索太尔平均直径SMD随时间的振荡,并使用高速相机拍摄了喷雾场和喷嘴内部流动的瞬时照片。通过提取图像边界的方法测量了液膜锥角的变化,并计算了一个周期内不同大小SMD时间占比分布。瞬时照片和SMD的测量结果表明,脉冲工作的离心喷嘴在脉冲工作时会出现柱状射流或由调速管效应形成的厚液环,导致喷雾场出现较大液滴。喷雾锥角测量结果表明,脉冲结束后液膜并不随着压降下降而直接收缩,而是继续保持较大锥角一定时间。对SMD的分析表明,脉冲宽度越小,一个脉冲内非稳态喷雾时间占比越大,导致整个脉冲的雾化质量越差。根据本文研究结果,为了提高离心喷嘴窄脉宽工作时的雾化性能,需要尽可能消除柱状射流和调速管效应的影响。  相似文献   
618.
为了研究镍基高温合金表面Co-Al涂层抗高温氧化性,对该Co-Al涂层在800、900和1000℃下进行200 h高温氧化试验,利用扫描电子显微镜(SEM)、能谱仪(EDS)和X射线衍射仪(XRD)等进行高温氧化行为分析。结果表明:合金氧化动力学曲线均基本符合抛物线规律,氧化激活能为78185 kJ/mol,质量增大速度较缓慢,平均氧化速度也较慢;合金表面生成氧化物结构完整、致密,主要以Al2O3为主;表面生成连续致密的Al2O3保护膜有效地阻止了Al向涂层与空气界面的外扩散和氧向涂层与基体界面的内扩散,在3种温度下Co-Al涂层均表现出优异的抗高温氧化性能。  相似文献   
619.
压气机转子叶片表面附面层分离/再附、转捩机制较为复杂,数值模拟方法受到了极大的限制,因此需要新的试验技术测量旋转状态下转子叶片表面附面层的发展状态。本文采用表面热膜测试技术对某风扇叶片表面附面层分离/再附、转捩等流动现象进行了试验研究,获得了旋转状态下风扇叶片表面的准壁面剪切应力。试验结果表明,在上游尾迹周期性扫掠的作用下,叶片表面附面层转捩、再附点提前,分离泡范围减小。表面热膜测试技术可较为准确地捕捉旋转叶片表面附面层的转捩、再附点,为旋转状态下转子表面附面层的流动测量提供了一种解决途径。  相似文献   
620.
液体火箭发动机推力室复合冷却流动与传热研究   总被引:2,自引:1,他引:2       下载免费PDF全文
为了预测液体火箭发动机推力室的复合冷却性能,建立了推力室再生冷却通道和超临界氢的三维仿真模型以及推力室内燃气和超临界氢膜的轴对称二维仿真模型。通过边界耦合发展了液体火箭发动机推力室复合冷却流动与传热的数值仿真方法。对航天飞机主发动机推力室内部燃气、超临界冷却膜、室壁和再生冷却剂进行了流动与传热耦合计算仿真研究。研究表明,仿真方法可较好地预测推力室燃气及再生冷却剂的流动和传热,计算得到航天飞机主发动机的燃气侧壁面最高热流密度为129MW/m2,最高壁温为885K,冷却剂温升为192K,压降为8.8MPa,结果与已有数据吻合较好。模型和仿真方法可用于液体火箭发动机推力室冷却系统传热计算和冷却结构的优化设计。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号