首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5524篇
  免费   1122篇
  国内免费   757篇
航空   5095篇
航天技术   580篇
综合类   747篇
航天   981篇
  2024年   49篇
  2023年   182篇
  2022年   225篇
  2021年   280篇
  2020年   238篇
  2019年   247篇
  2018年   147篇
  2017年   224篇
  2016年   242篇
  2015年   254篇
  2014年   277篇
  2013年   287篇
  2012年   310篇
  2011年   304篇
  2010年   277篇
  2009年   269篇
  2008年   295篇
  2007年   228篇
  2006年   186篇
  2005年   227篇
  2004年   228篇
  2003年   268篇
  2002年   226篇
  2001年   216篇
  2000年   148篇
  1999年   152篇
  1998年   158篇
  1997年   144篇
  1996年   156篇
  1995年   123篇
  1994年   141篇
  1993年   130篇
  1992年   135篇
  1991年   93篇
  1990年   91篇
  1989年   106篇
  1988年   53篇
  1987年   55篇
  1986年   17篇
  1985年   7篇
  1983年   2篇
  1982年   3篇
  1981年   3篇
排序方式: 共有7403条查询结果,搜索用时 153 毫秒
601.
航空发动机燃烧室涉及旋流、雾化蒸发、掺混、化学反应、湍流与火焰相互作用等多尺度强耦合物理化学过程,相关的高 精度建模和数值模拟面临极大的挑战。超大涡模拟是近些年发展的兼顾计算精度、计算效率和强鲁棒性的数值模拟新方法,具备 试验室尺度和复杂工程应用场景下湍流流动与燃烧仿真能力。针对航空发动机燃烧室相关流动与燃烧基本特征,阐述了超大涡 模拟的理论方法及特点,从旋流流动、湍流燃烧、液雾雾化、碳烟生成、燃烧不稳定等典型多物理过程,以及双旋流模型燃烧室和高 温升燃烧室气动性能集成仿真等方面介绍了超大涡模拟的研究进展,对涉及的物理机制进行了分析,为超大涡模拟在航空发动机 燃烧室中规模化工程应用提供了坚实支撑。超大涡模拟在较低的计算资源消耗下具备与传统大涡模拟相当的计算精度,是一种 经济可承受的燃烧室高精度气动性能仿真新方法。  相似文献   
602.
何创新  邓志文  刘应征 《航空学报》2021,42(4):524704-524704
近年来数据同化(DA)被引入湍流动力学研究中,通过融合实验测量和数值计算,提高了实验测量的精度和广度,改善了数值模拟的预测性能。实验观测、预测模型和同化算法是数据同化的三要素,湍流研究中的实验观测包括热线风速仪、粒子图像测速法(PIV)、压力传感器等局部测量数据,预测模型主要指流动控制方程及湍流封闭方程,而同化算法包括贝叶斯推断、集合卡尔曼滤波(EnKF)、伴随等。稳态数据同化一般结合雷诺平均Navier-Stokes (RANS)模型方程,从重新标定模型常数、修正涡黏模型方程形式误差、修正雷诺应力项等方面着手。非稳态的数据同化一般包括四维变分(4DVar)等时间连续的数据同化方式以及顺序数据同化。4DVar通过时间正向和逆向积分迭代,存储量和计算量都非常大。顺序数据同化不需要时间逆向积分,可以在若干时刻对实验观测进行间断地植入,正向求解整个系统。另外,随着人工智能的飞速发展,湍流数据同化研究也向智能化迈进。对于纯数据驱动的湍流机器学习,其缺乏物理本质的约束,而基于物理信息的机器学习在物理本质上与数据同化是一致的。  相似文献   
603.
陈坚强  吴晓军  张健  李彬  贾洪印  周乃春 《航空学报》2021,42(9):625739-625739
计算流体力学(CFD)仿真软件是流体相关的数学物理知识和工程实践经验的数字化表达,是工业数字化转型的重要助推。然而,大型工业CFD软件研发难度极高,需要同时兼顾功能多样、系统稳定、性能优越、交互友好等特征。依托国家数值风洞(NNW)工程,研发出一款通用流场模拟软件NNW-FlowStar,并在航空、航天等工业部门大力推广使用。软件基于非结构有限体积求解方法和大规模并行计算技术开发,结合现代化软件工程思维设计,具备先进的数值方法、高效的计算效率和友好的用户操作界面,可满足各类复杂外形的高效气动模拟。独特的重叠网格技术配合六自由度运动模块,可帮助实现武器分离、舱门定轴转动等各类气动-运动协同仿真需求。多类标模案例和复杂工程应用表明,FlowStar软件算法鲁棒、精度可靠,是一款高精度、高效率、高可靠性的通用CFD仿真软件。通过对软件的架构设计和功能应用进行介绍,使相关从业人员能更好地了解FlowStar软件,最终促进国产自主CFD软件生态的良性发展。  相似文献   
604.
近10余年来,在3个动态气动专题领域内,地面风洞自由飞实验与对应的天空飞行器的绕流雷诺数虽然相差1~2个量级,但风洞自由飞实验结果多次预测或再现了天空飞行器出现的对飞行安全、飞行性能产生严重影响、其它地面风洞实验方法难以预测或再现的这3个专题领域内的动态气动特性,这至少为3个专题领域内天地动态气动相关中的雷诺数影响,提供了一个新的理解。  相似文献   
605.
为提高旋翼他轴响应的预测,气动模型应当计入机动旋翼的尾迹畸变效应,而准确表示尾迹弯曲参数Kn是关键。为表达机动导致的各种效应,增广Peters-He有限状态尾迹模型可以吸收随飞行状态变化的Kn值。根据烟流实验,该参数随旋翼前飞速度、拉力和机动角速率而变化。旋翼的空气动力实验表明,旋翼轴接受准阶跃输入后,同轴及他轴的空气动力响应有过冲,且俯仰速率愈大,过冲幅值愈大。理论和实验结果的对比显示,为了正确计算机动飞行中的旋翼气动力,特别是操纵的他轴响应,应在模型中采用随状态变化的尾迹弯曲参数Kn。此外,在当前模型基础上联合动态尾迹畸变模型,计算出的旋翼力和力矩更接近试验数据。  相似文献   
606.
高超声速风洞气动布局设计   总被引:4,自引:0,他引:4  
在分析国内外高超声速风洞发展现状的基础上,根据南京航空航天大学高超声速风洞(Nanjing Universityof Aeronautics & Astronautics Hypersonic Wind Tunnel,NHW)总体技术指标和要求,对该风洞气动布局设计方案和备部件的气动设计进行了研究.风洞气动布局设计点为马赫数5和8、设计总压为1 Mpa、总温685 K;风洞驱动方式采用高压下吹-真空吸气式方案,运行时间大于10 s、高压气源容积为32 m3、真空容积为650 m3;风洞加热方式采用金属板蓄热式加热器方案;风洞试验马赫数获取方式采用φ0.5 m口径的马赫数5,6,7和8的型面喷管方案.  相似文献   
607.
高速航空拖靶的总体方案和气动外形优化   总被引:1,自引:0,他引:1  
针对某高速、低空恒高拖靶系统研制的需求,设计了一种有良好气动特性、结构简单、工艺性好、成本低的拖靶总体方案.为了进一步减少气动阻力,采用基于Kriging模型的优化方法对高速拖靶气动外形进行了优化设计.优化结果表明:在满足操纵力和稳定性要求前提下,优化后拖靶的气动阻力明显减小.本文研究结果为整个拖靶系统的进一步设计和论证奠定了基础.  相似文献   
608.
针对非对称飞行器在稠密大气层内级间分离时喷流干扰下的气动特性问题,采用捕获轨迹试验的网格测力技术和喷流试验技术相结合的试验方法,进行了风洞试验研究,研究了在不同来流马赫数、不同迎角、级间分离时一级与二级不同相对位置以及有无喷流状态下的气动干扰特性.详细论述了模型在风洞中的支撑方式、试验方案、喷流模拟参数的选择等,给出了典型试验结果,并进行了详细分析.结果表明:无喷流时,级间分离过程中的干扰流场使二级飞行器法向力减小,产生抬头俯仰力矩;喷流干扰则使法向力进一步减小,使抬头俯仰力矩进一步增大.试验结果已成功应用于某飞行器飞行试验中,试验数据精度满足工程要求,并被飞行试验验证.  相似文献   
609.
利用LSCE方法识别桥梁气动导数研究   总被引:1,自引:0,他引:1       下载免费PDF全文
在节段模型自由振动法识别桥梁气动导数风洞试验中,采用LSCE识别方法,无需迭代和设定初始值而实现整体识别.对具有理论解的理想平板气动导数进行识别仿真研究,结果表明:对不含噪声信号识别结果与理论解完全一致,对含有20%噪声的低信噪比信号识别除了A*4以外也都有较好的一致性,表明LSCE方法具有较高的识别精度和良好的抗噪声性能.风洞试验研究结果进一步证明了该方法具有较好的识别效果.  相似文献   
610.
光固化快速成型的轻质AGARD-B模型气动特性实验研究   总被引:3,自引:0,他引:3       下载免费PDF全文
传统金属制风洞模型质量大,设计加工周期长、成本高,为此笔者提出了采用一种光固化快速成型技术,设计加工轻质风洞模型的方法,并对比分析了引起光固化快速成型的轻质和金属AGARD-B模型气动特性间差异的原因.结果表明,在跨声速范围,轻质模型同金属模型的气动特性基本吻合,光固化快速成型技术的高速风洞模型设计方法基本可行.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号