首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   257篇
  免费   73篇
  国内免费   29篇
航空   245篇
航天技术   29篇
综合类   31篇
航天   54篇
  2024年   3篇
  2023年   27篇
  2022年   13篇
  2021年   13篇
  2020年   11篇
  2019年   19篇
  2018年   11篇
  2017年   11篇
  2016年   14篇
  2015年   10篇
  2014年   9篇
  2013年   17篇
  2012年   29篇
  2011年   27篇
  2010年   12篇
  2009年   17篇
  2008年   12篇
  2007年   4篇
  2006年   16篇
  2005年   8篇
  2004年   9篇
  2003年   7篇
  2002年   9篇
  2001年   7篇
  2000年   5篇
  1999年   3篇
  1998年   4篇
  1997年   2篇
  1996年   4篇
  1995年   1篇
  1994年   5篇
  1993年   7篇
  1992年   5篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
排序方式: 共有359条查询结果,搜索用时 31 毫秒
101.
微爆索切割航空有机玻璃的研究   总被引:1,自引:0,他引:1  
为了改善现有的航空弹射救生系统,提出了微爆索线性切割技术在弹射救生系统中的应用。设计了一系列微型爆破索,通过微爆索切割航空有机玻璃的实验研究,观测了有机玻璃层裂现象,得到了不同参数对有机玻璃破坏深度和破坏影响区的影响,确定了微爆索应采用的外壳材料、炸药类型、装药量的范围等参数。运用大型非线性有限元程序LS-DYNA3D对微爆索切割航空有机玻璃进行了数值模拟分析,得到了与实验结果吻合的计算结果,得到微爆索装药量与有机玻璃破坏深度的关系,为合理设计航空救生系统提供了有力依据。  相似文献   
102.
为研究爆震波经过突扩段的传播特性,实验采用低活性混气C2H2+2.5O2+70%Ar和高活性混气C2H2+2.5O2,测量了爆震波在扩张比为1.34的圆管间传播的速度变化,并运用化学反应动力学分析爆震波动力学参数。结果表明:爆震波在小管出口的速度至多降至0.6倍的Chapman-Jouguet爆震波速。高活性混气触发的爆震波的成功传播是由于在大管产生局部爆炸,随后形成了过驱爆震波。相应地,低活性混气触发的爆震波不会形成过驱爆震波,且波速的波动范围较小。当预混气体压力小于爆震波从小管向大管成功传播的最低压力时,低活性混气触发的爆震波更快地衰减为爆燃波。通过化学反应动力学分析可知,高活性混气的爆震波稳定性参数较高,更容易形成局部爆炸。在最低压力处两种混气的爆震波诱导区长度接近0.8mm,管径与胞格宽度之比接近于1,因此爆震波在圆管中传播的准则可以用于预估爆震波在扩张比为1.34的圆管内能否成功传播。  相似文献   
103.
为了研究横流喷嘴的雾化效果以及对发动机推力的影响,采用互击式直流喷嘴、逆向式直流喷嘴和水平式直流喷嘴进行了冷流试验.研究了不同试验工况下喷管出口喷雾场雾滴的索太尔平均直径与发动机的推力特性.研究结果表明:随着压比的增加,雾滴直径减小;相同的压比下,雾滴直径最小的喷射方案为喉扩喷射,雾化质量最好的喷嘴为互击式直流喷嘴;同时在喉扩喷射方案下,3种喷嘴的扼喉能力与推力比随着流量比的增加而提高.   相似文献   
104.
夏镇娟  武晓松  马虎  卓长飞 《推进技术》2017,38(6):1409-1418
为揭示圆盘形燃烧室内旋转爆震波的传播特性,以2H_2+O_2+3.76N_2为反应混合物,开展该结构下的二维数值研究。实现了旋转爆震波的成功起爆并得到了两种稳定的流场结构;详细分析了两种流场的特点,以及不同直径处爆震波参数及出口马赫数的变化规律。结果表明,旋转爆震波在壁面形成的反射激波对流场中的温度、压力分布以及流线都产生影响;随着直径的不断减小,旋转爆震波压力、温度以及传播速度都不断减小;流场稳定后,出口马赫数随时间的变化趋势与压力趋势相符,呈现"双波峰"特征。喷注总压为0.4MPa时,喷注入口的阻塞比为21%,超声速流动占整个出口流动的52.17%,出口流动的平均马赫数为0.98;当喷注总压降为0.2MPa时,入口阻塞比为20%,超声速流动占21.99%,出口流动的平均马赫数为0.95。  相似文献   
105.
根据加力燃烧室内锥凹腔点火与联焰要求,设计了扇形喷嘴并开展相应的雾化试验,研究了供油压差、扇形角度及扇形出口高度等参数对流量特性和雾化特性的影响以及加力环境下横向气流的温度、速度和供油压差对索太尔平均直径(SMD)及穿透深度的影响。采用称质量法测量流量系数,利用马尔文粒度仪和高速摄影仪对下游SMD、雾化角度及穿透深度进行测量。结果表明:①供油压差增大,流量系数先减少,后稳定;②供油压差一定,扇形出口角度越大,流量系数和雾化角度也越大;③扇形出口高度增加,雾化效果变好;④出口位置对雾化特性影响不大;⑤供油压差越大,穿透深度越大,SMD减小;⑥横向气流速度越大、温度越高,穿透深度越浅,油雾场越靠近下游;⑦横向气流温度越高, SMD越小。  相似文献   
106.
以角接触球轴承为研究对象,为分析喷射润滑油液在环间高速气流作用下的雾化情况,建立了轴承环间气液两相流仿真模型,采用FLUENT流体计算软件对高速角接触球轴承进行模拟分析计算,探讨在相同时刻不同转速、不同喷射角度等条件下油液颗粒直径大小的变化,以及在不同时刻索太尔平均直径(SMD)的变化趋势。结果表明:随着润滑油的穿透过程,腔内大粒径油液所占比例逐渐减少,小粒径比例增高;随着转速的增大,进入腔内油量也会随之减少,受环间气流涡的影响,迅速使油液液滴发生碎裂,使雾化加剧,颗粒直径减小,则会使SMD减小,不利于轴承的润滑;不同喷射角度条件下,15°的喷射角度轴承腔内的大粒径占比较大。  相似文献   
107.
为研究旋转爆震发动机(Rotating Detonation Engine, RDE)中燃料/氧化剂喷射和掺混对爆震波的影响及非预混环境下的爆震波的快速起爆与稳定传播,本文采用线性模型爆震发动机(Linear Model Detonation Engine,LMDE)来简化实际燃料喷射与爆震波相互作用的物理问题。通过RNG K-?湍流模型结合7步7组分氢气/空气机理的三维非定常反应流模拟方法,探究真实喷射条件下爆震波与混气相互作用、爆震波衰减及自持的特性。结果表明:氢气/空气的掺混均匀度至少要达到0.6才能使爆震波在非预混环境下传播;氢气孔与空气缝的入口压比需要满足爆震波进入燃烧室时,非均匀混气区恰好集中在氢气孔附近,燃料完全释放能量维持爆震波传播。  相似文献   
108.
为分析点火位置改变对旋转爆震波(RDW)起爆过程的影响,在圆盘形旋转爆震发动机上进行点火实验,研究了不同点火位置、质量流率条件下旋转爆震波的建立过程及工作特性。结果表明,不同点火位置下,RDW的起爆过程皆经历点火器放电、爆燃转爆震以及稳定旋转爆震3个阶段。点火位置靠近喷注面附近时,RDW起爆过程中的无序缓燃模式缩短,起爆时间缩短,且一致性更好。在燃烧室出口位置点火,低质量流率条件下,RDW的起爆时间明显增加;质量流率小幅度提高有效缩短了RDW的起爆时间,而质量流率大幅度提高增加了RDW起爆过程的波头数。模态转变的临界条件附近,点火位置改变可能会影响RDW起爆段的工作模态,在燃烧室中心位置附近点火,更容易得到多波旋转爆震波。点火位置改变对旋转爆震发动机(RDE)稳定段的工作模态和爆震波参数影响很小。  相似文献   
109.
为获得航空煤油在超声速气流中喷射雾化后粒径二维分布信息,设计了基于PLIF/Mie双光谱成像法的测量系统。在PLIF/Mie煤油超雾化粒径测量方法基础上,实现了SMD计算公式系数的标定和煤油超声速射流破碎和雾化的SMD二维在线测量,取得射流雾化场SMD径向分布、穿透深度、展向输运宽度等关键参数。结果表明:射流分两个阶段,前期突变阶段和稳定阶段,在初始射流压强为1.0MPa,来流初始压强为0.5MPa,喷孔直径1mm,喷射角度为90°的工况下,稳定阶段煤油喷雾SMD稳定在10μm左右,射流径向SMD由内向外由小变大,整体展向宽度范围比穿透深度稍大,在各截面位置变化趋势一致。  相似文献   
110.
Y型喷嘴反压环境粒径的图像捕捉测量技术   总被引:1,自引:0,他引:1  
鉴于Y型喷嘴反压条件下的粒径难以采用传统光学测量手段获得有效数据,提出一种基于图像捕捉的粒径处理程序,通过微距镜头拍摄雾场图像,通过图像识别和数据统计获取有效索太尔平均直径(SMD)。该处理方法在大气下与相位多普勒粒子分析仪(PDPA)测量结果误差不超过12%。实验结果表明:在反压条件下,当气流量为0g/s时,雾化粒径较大,随着环境压力升高和液流量增大,雾化粒径呈减小趋势;当加入气流量为55g/s时,雾化粒径显著降低,并且粒径随着环境压力升高而增大(该结果与不加气时恰恰相反),而在同一反压、不同液流量工况下,雾化粒径基本保持不变。在燃烧室变工况条件下,加入少量的气体即可使雾化粒径显著减小且在变工况条件下基本保持一致。   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号