首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1122篇
  免费   314篇
  国内免费   115篇
航空   1027篇
航天技术   156篇
综合类   150篇
航天   218篇
  2024年   16篇
  2023年   43篇
  2022年   55篇
  2021年   50篇
  2020年   54篇
  2019年   68篇
  2018年   47篇
  2017年   55篇
  2016年   77篇
  2015年   56篇
  2014年   80篇
  2013年   47篇
  2012年   62篇
  2011年   78篇
  2010年   69篇
  2009年   61篇
  2008年   67篇
  2007年   55篇
  2006年   53篇
  2005年   45篇
  2004年   38篇
  2003年   38篇
  2002年   39篇
  2001年   32篇
  2000年   29篇
  1999年   31篇
  1998年   20篇
  1997年   27篇
  1996年   19篇
  1995年   18篇
  1994年   25篇
  1993年   17篇
  1992年   20篇
  1991年   18篇
  1990年   13篇
  1989年   18篇
  1988年   3篇
  1987年   4篇
  1986年   2篇
  1984年   1篇
  1983年   1篇
排序方式: 共有1551条查询结果,搜索用时 31 毫秒
91.
高速离心压缩机旋转失速的三维数值模拟   总被引:1,自引:1,他引:1       下载免费PDF全文
郭强  竺晓程  杜朝辉  陈华  赵岩 《推进技术》2007,28(4):373-377
使用商业计算流体力学软件CFX求解三维雷诺平均的Navier-Stokes方程组,结合出口气腔模型对某带无叶扩压器的离心压缩机的旋转失速现象进行数值模拟。首先使用定常计算得到了该离心压缩机的稳态性能曲线,并和实验测量值进行了比较。然后引入出口气腔模型,模拟离心压缩机内的旋转失速流动。在小流量下,从沿流线方向速度等值线图和径向速度等值线图中观察得到了离心压缩机内部流场的非定常流动现象。还研究了气腔模型不同参数对失速流动的影响,结果表明气腔体积越大,计算得到的失速频率越低。  相似文献   
92.
旋转爆轰流场的数值模拟   总被引:7,自引:5,他引:7       下载免费PDF全文
基于带化学反应的二维Euler方程,采用氢气-空气的9组分19步基元反应简化模型,对充有当量比的氢气-空气预混气和空气的环形旋转爆轰流场,从点火燃烧到发展成旋转爆轰的过程进行了数值模拟。根据数值结果分析了波后流场中爆轰产物受激波、高温和离心力等作用而挤向外壁,形成有利于充入燃料,实现持续稳定旋转爆轰的流场特征。还讨论流场中爆轰波、激波与间断面和内外壁面反射或折射,从而形成多个激波相交的波系特征。为认识和理解旋转爆轰流场,开展旋转爆轰的实验研究等具有现实的指导意义。  相似文献   
93.
为了探究当量比对甲烷-空气连续旋转爆轰燃烧室(CRDC)特性的影响,利用二维可压缩欧拉方程对CRDC进行了数值研究,分析了爆轰波的发展过程和贫燃熄火过程,对比了不同工况下CRDC特性参数的变化情况。结果表明:CRDC起爆后燃烧场在由不稳定状态到相对稳定状态的过程中发生了2次碰撞,当进气当量比较低时,CRDC未能完全发生2次碰撞过程就已经熄爆。随着进气当量比的降低,爆轰波传播速度、轴向平均速度、出口平均温度、出口平均总压均呈下降趋势;增压比随当量比降低而减小的根本原因在于旋转爆轰燃烧过程和等压燃烧过程的熵增差减小,使吉布斯自由能增量差减小。CRDC的燃料驻留时间处于亚毫秒量级,燃烧热效率保持在99%以上。   相似文献   
94.
为了更准确地模拟旋转整流罩积冰过程,在现有三维积冰与冰层表面薄水膜流动耦合模型基础上,基于功平衡分析的方法引入了旋转部件表面水膜脱离模型,并发展了相应的计算方法,给出了水膜脱离的判定依据:当气流曳力做的功和由于离心力使水膜增加的潜能之和大于黏附功时整流罩表面的水膜会发生脱离。对旋转整流罩积冰进行数值模拟,计算结果与实验结果吻合得较好,验证了该模型的合理性和计算方法的可行性。之后分析了转速和来流速度对整流罩表面水膜脱离和积冰的影响,结果表明:转速和来流速度越大,水膜发生脱离的比例越大。在研究范围内,转速为3000r/min和6000r/min时,因水膜脱离导致积冰总量分别减少13.4%和15.8%;来流速度为40、50m/s和60m/s时,因水膜脱离导致积冰总量分别减少为12.2%、13.4%、14.2%。   相似文献   
95.
对损伤结构进行动力特性分析是进行无损检测的重要基础,而对于旋转梁结构的裂纹损伤动力特性研究,却鲜有文献涉及。以变截面旋转裂纹梁为研究对象,对其横向振动特性进行研究,提出一种求解变截面旋转裂纹梁横向振动特性的新方法。首先利用扭转弹簧模拟裂纹效应,建立含裂纹梁局部柔度模型,然后采用Frobenius方法求解振动方程,得到方程的级数解析解,并研究裂纹位置和深度对振动频率的影响,分析不同损伤程度、不同转速工况下梁的前两阶固有频率变化情况。结果表明:本文方法是有效的,转速和损伤程度的变化并非独立影响梁的固有频率,两者间具有耦合作用机理,对于变截面梁同样成立。  相似文献   
96.
以SSD为代表的主流深度学习方法在目标检测领域取得了显著的成绩,但由于该类方法只能以矩形框给出目标的概略位置,检测结果具有很大的背景冗余区域,特别是港口密集停泊的舰船在图像中会出现区域重叠,导致误检和漏检。针对以上问题,提出了一种具有旋转不变性的舰船目标精细化检测方法,该方法综合利用可变形卷积、可变形池化、旋转的边框回归和旋转的非极大值抑制等模块的优点,借鉴MobileNet架构对网络加速,通过学习密集区域目标的几何形变,有效预测目标的旋转角度,最终以旋转的矩形框给出目标的位置。实验结果表明,该算法可实现多类舰船目标类型区分和目标朝向判定的功能,有效地解决了实际应用中的目标精确定位定向难题,提高了自动目标识别的精确性,并满足工程应用的实时性要求。  相似文献   
97.
为了提高诱导轮的气蚀性能,设计了一种带螺旋槽的壳体结构,通过试验获取了诱导轮安装螺旋槽后的水力性能和气蚀性能,采用快速傅里叶变换方法 (FFT)对入口脉动压力进行了分析,并与安装J型槽的诱导轮进行了对比。结果表明:同流量下,带螺旋槽诱导轮扬程升高,同时螺旋槽能改善诱导轮的气蚀性能,并且在设计流量Q_d和1.1Q_d工况下对同步旋转气蚀产生抑制作用,但在0.8Q_d工况下,螺旋槽对同步旋转气蚀的抑制作用弱于J型槽。  相似文献   
98.
目前,国内"三自"(自标定、自对准、自检测)光纤惯导系统在长航时高精度自主导航领域已逐渐开展应用,但光纤陀螺安装误差、安装不正交度以及标度因数等参数稳定性大大限制了"三自"光纤惯导系统精度的提升,其主要原因是载体运动诱发的航向耦合效应严重影响了旋转调制效果。从航向耦合效应机理分析入手,指出了"三自"惯导系统航向耦合效应的不可解耦性,但针对无人飞行器和无人潜航器等通常需要规划航迹的载体,提出了一种基于规划航迹的旋转方案自适应调整技术,有效地抑制了航向耦合效应。试验结果表明,该方法可将系统的导航精度提升80%以上。  相似文献   
99.
郭隽  李庆 《推进技术》2018,39(8):1790-1796
为了探究旋转盘腔内的流动和换热规律,对轴向通流旋转盘腔进行了非稳态数值模拟,将计算结果与实验数据进行了对比,探究了流动不稳定性的发展过程,分析了盘腔内流动结构和盘面换热特性随旋转雷诺数的变化规律。结果表明:旋转引起的正旋涡从盘罩附近开始发展,随转速的增大而变大,挤压低半径区域的强迫对流区,最终扩展到整个盘腔,盘腔中轴面的涡对数与流动不稳定性的强度有关。上游盘和下游盘的高半径区域换热强度随转速的增大而增强,下游盘低半径区域的换热强度在低转速下由于冲击作用而较强,但该冲击作用随转速的增大而减弱,低半径区域的换热强度也就随之减弱。当旋转雷诺数增大到4.94×105时,下游盘低半径区域受到的冲击作用减小到可以忽略。  相似文献   
100.
非预混条件下的旋转爆轰燃烧室双波头演化过程数值模拟   总被引:1,自引:0,他引:1  
针对旋转爆轰燃烧室双波头演化过程中流场结构变化的问题,对非预混条件下的旋转爆轰燃烧室从起爆到形成稳定的双波头过程进行了数值模拟研究。研究结果表明,从起爆到形成稳定爆轰过程,燃烧室主要经历了起爆、爆轰波对撞和稳定爆轰三个阶段;在爆轰波对撞阶段,首次对撞是两个爆轰波间的对撞,由于对撞点处缺少新鲜混合气,从而在对撞结束后衰减为两个压力波。第二次对撞是两个压力波间的对撞,因为在第二次对撞点附近存在新鲜混合气来支撑爆轰波的持续传播,故对撞结束后产生了一个爆轰波和一个较弱的压力波;第二次对撞发生后,燃烧室内的压力波反射叠加并形成局部高压区,此高压区压缩气体使气体温度升高,高温气体引燃混合气后,最终发展成为第二个爆轰波;稳定阶段,两个爆轰波均能稳定自持传播,爆轰波峰面压力可达1.45MPa,波后温度为2500K,爆轰波速度稳定在1738m/s,产生的推力与比冲分别为79.76N和2312.15s;斜激波的存在使燃烧室出口平面流场产生了较大波动。   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号