首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   623篇
  免费   374篇
  国内免费   35篇
航空   845篇
航天技术   40篇
综合类   83篇
航天   64篇
  2024年   9篇
  2023年   28篇
  2022年   40篇
  2021年   57篇
  2020年   54篇
  2019年   49篇
  2018年   56篇
  2017年   45篇
  2016年   55篇
  2015年   65篇
  2014年   52篇
  2013年   47篇
  2012年   48篇
  2011年   40篇
  2010年   38篇
  2009年   33篇
  2008年   42篇
  2007年   32篇
  2006年   20篇
  2005年   16篇
  2004年   12篇
  2003年   23篇
  2002年   10篇
  2001年   16篇
  2000年   7篇
  1999年   11篇
  1998年   17篇
  1997年   6篇
  1996年   12篇
  1995年   10篇
  1994年   11篇
  1993年   10篇
  1992年   10篇
  1991年   5篇
  1990年   8篇
  1989年   10篇
  1988年   6篇
  1987年   4篇
  1986年   10篇
  1985年   4篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
排序方式: 共有1032条查询结果,搜索用时 328 毫秒
341.
路易聘  肖隐利  李文刚 《推进技术》2021,42(9):2082-2093
为了深入理解分层旋流流场特征和燃烧稳定性,采用OpenFOAM对分层旋流燃烧器的冷态和燃烧流场进行了大涡模拟。研究了旋流数对分层旋流流场结构和非稳态特性的影响。采用Q准则显示了流场中的瞬时涡结构;利用功率谱分析了流场中的进动特征。结果表明:在冷态工况下,旋流对回流区的位置和大小影响较小。随着旋流数增大,出口气流受到旋流诱导的离心作用,流动发散,流场扩张角变大,流场下游出现二次回流区。平均流场的三维流线与螺旋涡在空间中均表现成正交关系,表明螺旋涡是由剪切层Kelvin-Helmholtz不稳定性产生。在燃烧工况下,随着旋流数增大,回流区的面积增大,平均温度分布不断沿径向扩张,火焰锋面脉动增强,涡旋发生破碎的位置明显向上游移动。  相似文献   
342.
为了研究旋流强度对氢气预混火焰燃烧诱导涡破碎(CIVB)回火的影响,以便深入理解氢气的CIVB回火特点进而减弱回火,首先采用二维轴对称模型,并使用用户自定义函数(UDF)修改动量守恒方程来模拟旋流,得到了不同旋流数下氢气预混火焰的CIVB回火极限,然后从旋流强度对流场特性和火焰特性两方面的影响进行深入分析。结果表明:对于无中心体旋流预混喷嘴中氢气火焰的CIVB回火,旋流数从0.409增加到0.432,从流场条件分析,旋流数增加使负切向涡量增加,对回火起促进作用;从火焰条件分析,旋流数增加使氢气湍流火焰速度先增加后减小,最后趋于猝熄,对回火先起促进作用后起抑制作用。流场和火焰条件共同决定了旋流数对氢气预混火焰CIVB回火的影响趋势,即旋流数增加先促进回火后抑制回火。  相似文献   
343.
采用试验与数值模拟方法研究了空气节流对煤油燃料超燃冲压发动机火焰稳定的影响。发动机入口气流总温、总压和马赫数分别为1100K,1.0MPa和2.0。空气节流位置距离发动机入口625mm,空气节流流量为入口发动机空气流量的27.2%。多种非接触光学测量手段被应用于超燃冲压发动机燃烧流场结构和火焰传播规律的诊断,包括纹影、阴影、差分干涉、自发光照相和OH-PLIF。首先考察了有、无空气节流时超燃冲压发动机冷流流场的结构,结果显示:在实施空气节流后,流场内产生了激波串结构。激波串促使流场的静温和静压升高,马赫数降低。同时激波串与边界层相互作用,导致了边界层分离,促进了燃料与空气的高效混合,实现了煤油的可靠点火。其次考察了先锋氢气燃烧流场的火焰传播规律与稳定形态,结果表明:当先锋氢气当量比为0.3时,燃烧流场振荡;当先锋氢气当量比为0.1时,燃烧流场稳定。最后研究了空气节流对煤油燃料超燃冲压发动机火焰稳定的影响,结果表明:不实施空气节流时,液态室温煤油吹熄了先锋火焰,煤油点火失败;实施空气节流后,煤油成功点火,当先锋氢气和空气节流撤除后,煤油仍然保持稳定的燃烧。  相似文献   
344.
  总被引:2,自引:0,他引:2  
北京航空航天大学发展的TeLESSⅡ低排放燃烧室采用中心分级的布局方式,其中心为经典的旋流杯结构预燃级,为燃烧室提供稳定的点火源,预燃级外圈采用预混设计的单级轴向旋流器的主燃级以降低排放。研究了预燃级一级旋流器和二级旋流器的旋流数组合对燃烧室熄火性能的影响,研究表明预燃级的设计在中心分级低排放燃烧室火焰稳定中扮演重要角色。在常温常压条件下的单头部燃烧室上测量贫油熄火油气比,并通过数值计算对比分析不同方案在熄火时的气动热力特征。研究表明:回流区总温越高燃烧室贫油熄火油气比越低,二级旋流数减少有利于火焰和流场的耦合,从而提高回流区火焰稳定,拓宽贫油熄火边界。一级旋流数增加贫油熄火油气比不是随之降低。  相似文献   
345.
为研究热射流点火对爆震管内火焰加速及爆震波触发的影响,运用34步26组分丙烷基元反应进行了二维数值模拟,获得了5种不同的热射流发生器几何结构下的爆震管内火焰传播规律及缓燃向爆震转捩(deflagration to detonation transition,DDT)的时间与距离.结果表明:爆震管中湍流在火焰加速阶段起着重要作用,在爆震波触发阶段激波与火焰相互作用占有主导地位.根据DDT过程的定义,得到DDT时间在1.4~2.0ms之间,同时发现热射流发生器长度为150mm,热射流发生器孔径在8mm时DDT时间最短,热射流发生器长度及孔径对DDT距离的影响不大.   相似文献   
346.
代威  林宇震  张弛 《航空动力学报》2015,30(5):1092-1098
双级旋流器是航空发动机燃烧室头部产生回流区所采用的主要形式,研究主要考察第2级径向旋流器的旋流数对点火与燃烧稳定性能的影响,数值模拟结果能够较好地匹配第2级径向旋流器设计参数.试验研究表明:第2级径向旋流器旋流数的改变对燃烧室点火性能无影响;但减小该旋流数会对贫油熄火性能产生明显地改善,旋流卷吸效果会影响回流区火焰稳定.减小第2级径向旋流器旋流数,使下游卷吸量增加,回流区流动与火焰匹配更好,更有利于燃烧稳定性的提高.   相似文献   
347.
N_2O/C_3H_8点火器初步实验   总被引:1,自引:1,他引:0  
为了研究氧化亚氮与丙烷的点火特性,首次提出了N2O/C3H8火炬式点火方案,设计、加工了点火器,并组建了点火实验系统,在不同的流量和余氧系数下进行了点火实验.结果表明:点火方案可行,喷嘴设计合理,雾化效果和余氧系数是决定点火器能否点燃的关键,余氧系数在0.222~0.321内点火器能可靠地被重复点燃并形成稳定的点火火炬.实验为N2O/C3H8点火器的进一步研究提供了参考,并为以后实现该点火器对发动机的成功点火奠定了基础.  相似文献   
348.
亚燃冲压发动机中凹腔与V槽火焰稳定器性能对比分析   总被引:6,自引:3,他引:3  
通过亚燃冲压发动机直连式试验和数值计算,对凹腔火焰稳定器及V槽火焰稳定器的点火性能和燃烧性能进行了初步研究.结果表明,凹腔火焰稳定器可以直接用高能火花塞点燃,而V槽火焰稳定器只能用氢气引导火焰点燃;火焰稳定方式与燃料的喷注方式相对应,中心喷注方式适用于V槽火焰稳定器,壁面或者贴近壁面的喷注方式适用于凹腔火焰稳定器.燃烧性能方面,凹腔属于边区组织燃烧方式,V槽火焰稳定器属于中心组织燃烧方式,更有利于已燃气体和未燃气体的混合.凹腔与V槽的燃烧效率较为相近,但V槽火焰稳定器具有较高的总压损失.   相似文献   
349.
超声速燃烧凹腔质量交换特性的混合RANS/LES模拟   总被引:3,自引:1,他引:2  
对超声速冷流及燃烧流条件下超燃冲压发动机火焰稳定凹腔的质量交换特性进行了研究.采用混合RANS/LES(Reynolds-averaged Navier-Stokes/large-eddy simulation)方法对非定常流场进行数值模拟,系统研究了凹腔结构参数和横向喷流燃烧放热对凹腔质量交换特性的影响.首次采用"原子追踪法"对化学反应流条件下的凹腔质量交换过程进行了刻画.结果表明:在冷流条件和燃烧流条件下,凹腔驻留时间均随长深比的增大而增加;凹腔后缘倾角对驻留时间的影响在冷流条件下比较显著,而在燃烧流条件下明显减弱;相同结构的凹腔,在燃烧流条件下的驻留时间相对于冷流条件明显减小.   相似文献   
350.
建立了一种用AIR-C2H2火焰原子吸收光谱法连续测试镉镍电池羰基镍粉中铜、锰、钴含量,介绍了铜、锰、钴最佳测试条件,同时对样品硝化处理条件及在测试样品中的干扰因素进行了综合考虑。该方法具有很好的精密度和准确度,具有操作简便、时间快速、灵敏度高、重现性好、容易掌握等特点。铜、锰、钴含量的相对标准偏差均小于1.0%(n=6)。标准加入回收率均在97.0%-99.0%范围内。适用于镉镍电池羰基镍粉中含有较多共同被测离子铜、锰、钴的生产现场控制分析和样品系统分析。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号