首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   978篇
  免费   284篇
  国内免费   93篇
航空   931篇
航天技术   134篇
综合类   79篇
航天   211篇
  2024年   10篇
  2023年   35篇
  2022年   67篇
  2021年   65篇
  2020年   60篇
  2019年   69篇
  2018年   61篇
  2017年   54篇
  2016年   69篇
  2015年   53篇
  2014年   67篇
  2013年   56篇
  2012年   82篇
  2011年   69篇
  2010年   66篇
  2009年   48篇
  2008年   69篇
  2007年   67篇
  2006年   52篇
  2005年   46篇
  2004年   41篇
  2003年   25篇
  2002年   15篇
  2001年   16篇
  2000年   9篇
  1999年   9篇
  1998年   8篇
  1997年   15篇
  1996年   6篇
  1995年   9篇
  1994年   5篇
  1993年   5篇
  1992年   5篇
  1991年   8篇
  1990年   4篇
  1989年   5篇
  1988年   1篇
  1985年   3篇
  1981年   1篇
排序方式: 共有1355条查询结果,搜索用时 234 毫秒
121.
针对采用双阀调节的恒压腔系统压力在空气流量大范围变化时的精确控制问题,提出了一种基于控制分配的恒压腔压力精准控制方法。首先,建立了虚拟放气流量的双阀控制分配算法,包括:建立满足虚拟放气流量要求且调节阀能耗最小的优化问题;通过线性矩阵不等式(Linear Matrix Inequality, LMI)求解该优化问题得到双阀实际流通面积值;考虑调节阀动态并计算调节阀控制信号指令值。其次,建立以虚拟放气流量为恒压腔控制输入的闭环负反馈回路,基于此,设计满足伺服性能和抗干扰性能要求的PI控制器,引入上述双阀控制分配算法,进而构建完整的基于控制分配的恒压腔压力控制系统。仿真结果表明,采用该方法的控制系统性能明显优于传统单阀PI控制系统性能,恒压腔压力动态相对误差小于0.07%;干扰流量最大变化率为77kg/s2时,压力最大偏差低于500Pa;此外,调节阀动态时间常数和流量系数的拉偏仿真结果进一步验证了该控制器的鲁棒性。  相似文献   
122.
为进一步拓宽凹腔驻涡值班稳定器在低温、高速来流条件下的点熄火边界,提出了一种利用高温燃气预热、预混供油的蒸发式凹腔驻涡值班稳定器。研究了蒸发式凹腔驻涡值班稳定器的流动特性、燃油分布特性及点火性能。研究结果表明:蒸发式凹腔驻涡值班稳定器的掺混腔和凹腔内部形成的涡系结构为低温、高速来流下的点火和燃烧提供了有利条件。凹腔驻涡区的气相油雾沿流向分布均匀,沿周向从稳定器对称子午面最富递减到相邻稳定器中间面最贫。在相同来流温度下,蒸发式凹腔驻涡值班稳定器的贫油点火和熄火当量比均随着来流速度的增大而增大。在低温(600K)、高速(100~200m/s)来流条件下,相比于蒸发式Z形值班火焰稳定器和常规薄膜蒸发式火焰稳定器,蒸发式凹腔驻涡值班稳定器贫油点火当量比能分别降低5.5%和30%;其贫油熄火当量比能分别降低37.4%和48.8%。  相似文献   
123.
空间谱估计算法与通道失配   总被引:2,自引:0,他引:2  
通道特性失配一直被认为是超分辨测向工程实现的一个重大障碍,文章证明了这是一个严重误解。当通道失配量值已知时,空间谱估计算法可以自行剔除其影响,因而具有良好的宽容性。对难以用一般方法测得的通道相位失配,提出了一种利用空间谱估计算法进行渐进无偏估计的方法。从而表明,空间谱估计算法在当前技术条件下就完全可以实现。  相似文献   
124.
王岩  何淼生  余彬  王巍  刘洪 《推进技术》2022,43(6):271-284
为了深入认知凹腔驻涡与高速可压缩来流之间的相互作用过程以及来流马赫数对上述动力学过程的内在影响规律,对长深比为1.0的单凹腔基础构型在常温、常压、Ma=0.3~0.7的高速可压缩来流下进行冷态非定常数值模拟,并基于拉格朗日视角研究来流与凹腔驻涡相互作用及其物质输运特性。结果表明:凹腔上方剪切层内旋涡结构仍然具有类似自由剪切层的周期性演化过程,主流与凹腔通过三次掺混进行物质输运;随着主流马赫数的增加,旋涡运动方式及凹腔-主流物质掺混机制都发生了本质上的改变,剪切层内旋涡和凹腔主涡涡量均呈现数量级式增长,剪切层旋涡结构脱落频率近似线性增长并逐渐卷吸至凹腔中部,进入凹腔的主流流体占比降低,但扩散程度和速度加快;此外,源于凹腔的流体流出唇口线后经剪切层的夹带作用回流占比增大,降低了凹腔-主流的整体质量交换水平;驻留参数整体衰减,高马赫数时仅为低速工况的1/2,显著降低了回流区对于流体驻留作用的贡献。  相似文献   
125.
根据超磁致伸缩材料的本构方程分析了超磁致伸缩作动器输出位移的组成,以此为根据建立了基于超磁致伸缩作动器的单层单自由度隔振平台数学模型.该模型以平台在激振力作用下产生的振动位移为系统干扰输入;根据此模型分析了基于超磁致伸缩作动器的隔振原理;在频域内推导出了系统隔振能力与激振力频率及作动器最大输出位移之间的数学关系,然后在时域内采用自适应LMS(Least Mean Square)算法在Matalb环境下进行仿真.仿真结果与理论分析均表明,隔振平台的隔振能力与激振力频率的平方以及作动器最大输出位移成正比,从而为合理设计隔振平台用超磁致伸缩作动器提供了理论依据.该模型不仅可用于分析基于磁致伸缩作动器的隔振原理,对其它作动器的隔振原理也适用.   相似文献   
126.
导弹滚转通道气动伺服弹性稳定性分析   总被引:1,自引:1,他引:1  
弹性飞行器可能由于结构、气动及控制的不利耦合引发气动伺服弹性失稳,为此分析了带有差动舵面及控制系统的细长体导弹滚转通道气动伺服弹性稳定性.导弹的广义非定常气动力采用气动导数方法计算,动力学方程考虑了弹体的刚体滚转运动和一阶弹性扭转振动.由导弹动力学方程求解得到滚转通道的开环传递函数,并应用Nyquist方法进行闭环系统稳定性分析.算例表明,若控制系统设计不当,系统有可能在弹性振动频率处发生气动伺服弹性失稳.   相似文献   
127.
通过建立模型,利用Ansoft HFSS 12.0对小型铯原子钟内微波腔的调谐过程进行了仿真,得到了调谐棒半径、在调配器内长度与微波腔谐振频率之间的关系曲线。结果表明,调谐棒半径一定时,调谐棒长度在一定范围内,微波腔谐振频率随着长度的增加逐渐下降;随着半径的增大,微波腔谐振频率的变化范围逐渐增大,在铯原子跃迁中心频率处,调谐棒长度对微波腔谐振频率的影响变大。根据仿真结果,给出了调谐棒半径的取值范围,为微波腔的设计、加工和调谐提供了理论指导。  相似文献   
128.
POD和DMD方法分析不同间隙压气机旋转不稳定性特性   总被引:4,自引:3,他引:1  
对一台单级低速轴流压气机旋转不稳定性(RI)进行分析。在前期的旋转不稳定性特性、流场成因和不同间隙影响的研究基础上,进一步基于全通道数值模拟,采用两种流场降阶方法分析不同叶顶间隙条件下旋转不稳定性各阶模态对应的流场成分、模态能量占比和稳定性等特性。计算结果表明,前几阶模态能量占比大,对流场起主要贡献,并且稳定性相对较强。随着间隙的减小,旋转不稳定性的能量占比和稳定性下降,各阶的叶片转动成为流场的主要成分。   相似文献   
129.
为提高换热强度、解决设备内部高热流密度散热问题,采用实验方法研究R141b在不同直径(D=0.5mm和1.0mm)水平圆形微通道内的沸腾换热特性,分析了热流密度(q=2.0kW/m~2~47.6kW/m~2)、质量干度(x=0~0.6)、质量流速(G=111.11kg/(m~2·s)~333.33kg/(m~2·s))的变化对平均传热系数h的影响,探究不同情况下影响沸腾换热的主导因素。实验研究表明:平均传热系数h随热流密度q的增加而减小,在不同范围内减小速率有明显差异;热流密度q=2kW/m~2~5kW/m~2时质量流速G对平均传热系数h影响较明显,热流密度较高时质量流速G对换热影响很小;在质量流速G=111.11kg/(m~2·s)~333.33kg/(m~2·s),质量干度x0.3时,平均传热系数h随质量干度x增加而明显下降,在设计微通道换热器时应尽量使R141b处于初始沸腾阶段以获得更好换热效果,并采取一定措施预防干度过高引起的换热恶化。  相似文献   
130.
基于遗传优化算法,进行了T2紫铜同种材料扩散连接工艺研究。采用正交试验方法,结合BP神经网络和多目标遗传算法,以扩散连接时的温度、压力、保温时间为输入变量,以扩散连接后的试样焊合率和变形量为输出变量,对扩散连接工艺参数进行优化,并实施相应的扩散连接验证试验。结果表明:T2紫铜合适的扩散连接工艺参数为:温度780℃、压力7. 5 MPa、保温时间120 min,此条件下焊合率可达95. 26%,变形量为0. 166 mm。采用此工艺参数进行微通道热交换器零件制造,厚度方向变形量0. 162 mm,经超声C扫描后连接情况良好,经耐压防漏检测后满足密封性及设计要求。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号