首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   322篇
  免费   71篇
  国内免费   35篇
航空   295篇
航天技术   27篇
综合类   58篇
航天   48篇
  2024年   5篇
  2023年   4篇
  2022年   9篇
  2021年   13篇
  2020年   16篇
  2019年   11篇
  2018年   13篇
  2017年   13篇
  2016年   11篇
  2015年   19篇
  2014年   25篇
  2013年   16篇
  2012年   10篇
  2011年   15篇
  2010年   13篇
  2009年   24篇
  2008年   21篇
  2007年   16篇
  2006年   12篇
  2005年   16篇
  2004年   12篇
  2003年   15篇
  2002年   13篇
  2001年   11篇
  2000年   13篇
  1999年   7篇
  1998年   4篇
  1997年   13篇
  1996年   8篇
  1995年   9篇
  1994年   6篇
  1993年   10篇
  1992年   7篇
  1991年   4篇
  1990年   5篇
  1989年   2篇
  1987年   2篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
排序方式: 共有428条查询结果,搜索用时 15 毫秒
11.
管道系统中设置的阀门、限流环等十分常见,装备限流装置的管道本质就是典型的连续突变管道。突变管道流动存在十分明显的局部水头损失,因此工程设计人员在进行管道系统设计时不得不考虑因管道突变而产生的局部水头损失;目前针对单个突变管道流动局部水头损失已有较为深入的研究,并已推导出相应的计算模型,但对于连续突变管路的水头损失研究较少,工程设计中对于连续突变管路的局部水头损失计算采用基于单个突变管道水头损失的叠加计算法,由于连续突变管路流动为极其复杂的湍流,基于单个突变管道水头损失的叠加计算法而得到的连续突变管路的局部水头损失结果误差较大。鉴于此,采用理论推导与实验相结合的方法,设计四种不同管径比的管道以及23种不同进口流量工况,并以航空煤油为介质进行实验,利用实验结果进行分析并对传统的突变管道水头损失的叠加计算法进行修正,提出了连续突缩突扩管道的局部水头损失修正计算模型,其计算结果相比于传统计算方法在精度上得到了显著性提高,为工程管道系统设计中的连续突变管路局部水头损失计算提供了有力依据。  相似文献   
12.
针对小口径管道的测绘问题,提出了一种MEMS惯测装置在小管道测绘系统中应用的方法,直接利用地标点信息为MEMS惯测装置装订初始方位,采用因子图理论对惯性/里程计组合导航信息进行处理,通过后续处理对装订误差进行修正,解决了MEMS惯测装置无法完成初始对准的问题。给出了惯性/里程计组合导航的因子图以及和积算法递推公式,并通过牵引试验对所提方法进行了验证。试验结果表明,提出的应用方法能够有效解决小口径管道的测绘问题,在100m间隔的路标点条件下,单边定位精度能够达到5cm。  相似文献   
13.
基于瞬态液晶测量技术的收缩-扩张形孔   总被引:2,自引:2,他引:2  
采用一种进行全表面测量的瞬态液晶测量技术测量了新型气膜孔(收缩-扩张形孔)的气膜冷却特性,研究了动量比对冷却效率和换热系数的影响,并与传统的圆柱形孔气膜冷却特性进行了对比,结果表明:收缩-扩张形孔中心线附近区域的冷却效率相对较低,而两孔之间区域的冷却效率相对较高,与圆形孔分布规律相反;在上游区域,两孔中间区域的换热系数比相对孔中心线附近区域较高,而在下游区域,两孔中间区域的换热系数比相对孔中心线附近又较低,与圆形孔相比也有较大不同。相对于圆柱形孔,收缩缝形孔的平均换热系数比在上游较高,在下游较低;收缩-扩张形孔喷出气膜对下游壁面区域的有效覆盖率远大于圆柱形孔,其展向平均冷却效率明显高于圆柱形孔;收缩-扩张形孔在动量比为2时的平均冷却效率最高。  相似文献   
14.
针对受一个阴极保护站保护的埋地钢质管道,提出了管道电位和电流计算的等效电阻方法,并用解析方法推导出管道覆盖层破损后电位和电流的计算公式。等效电阻方法将所研究管道划分成若干管段,用一个电阻表示管段对轴向电流的阻碍作用,一个电阻表示对径向电流的阻碍作用,从而将管道强制电流阴极保护系统表示成一个等效电阻电路。利用网孔电流法求解该电路的网孔电流,并计算出管道各节点上的电位。计算结果表明,等效电阻方法得到的结果与解析法的计算结果完全吻合。该方法特别适合于管径和(或)过渡电阻发生变化的情况。  相似文献   
15.
内乘波式进气道内收缩基本流场研究   总被引:10,自引:0,他引:10  
内收缩基本流场的设计直接决定了内乘波式进气道最终性能.编制二维轴对称特征线法程序,实现了来流马赫数6条件下的内收缩锥基本流场计算.提出以两道曲激波将内收缩锥流场划分为三个区域,反射激波与基本流场的交点所在平面流量平均参数作为内收缩锥基本流场的性能评价参数.分析发现,内收缩锥基本流场流动特征与平面二维流动和外锥流动存在显著不同,该类流场流动损失与二维平面流动相当,但压缩能力强.内锥角、中心体半径比两个几何参数对流场性能的影响具有相似规律,给出了相应表达式,从而为内乘波式进气道的设计提供了依据.  相似文献   
16.
为了研究弯扭管道进气产生的旋涡畸变对离心压气机气动性能产生的影响,采用数值模拟及实验的方法进行研究。首先明确了管道出口截面二次流场结构随扭转角度的演化过程,发现随管道扭转角度增大,旋涡结构在孪生涡和偏置涡之间变化;当扭转角度等于90°时,管道出口近似呈现团涡结构。研究表明,与孪生涡相比,近似团涡的旋涡形式对压气机性能的影响更显著。在设计转速下,当近似团涡的旋涡方向与叶轮转动方向相同时,压气机压比和效率的下降量约达25%,并减小了喘振流量;而旋涡方向与叶轮转动方向相反时,压气机性能无明显变化,喘振流量同时增大。通过阐述不同叶高气流旋涡角度、旋涡强度与相对气流角之间的关联关系,发现叶轮进口气流旋涡在不同叶高位置上的旋涡角度和强度改变了叶片前缘相对气流角,进而对进气攻角产生明显作用。  相似文献   
17.
为研究固体燃料超燃冲压发动机进气道与燃烧室的匹配特性,以飞行马赫数为6、飞行高度为25km为设计点对发动机各部件进行初步设计,采用数值模拟方法计算了一系列具有不同进气道内收缩比的发动机模型.结果表明:在保持燃烧室结构不变的条件下,发动机推力与比冲随进气道内压缩比增大开始显著下降,随后小幅上升;在保持燃烧室入口面积扩张比不变的条件下,发动机总体性能随进气道内收缩比的增大而提高.在满足进气道起动与燃烧室火焰稳定的前提下,发动机设计应采用尽可能大的进气道内收缩比与尽可能小的燃烧室入口面积扩张比.   相似文献   
18.
为了判断进气道起动马赫数,基于Kantrowitz起动判据,联系激波关系式和流量连续方程得到一系列等值线,将等值线推广到有入射激波和低马赫数溢流的情况。结果表明这些等值线具有以下特性:等值线连接进气道的内收缩比和总收缩比;等值线是等总压恢复线和等流量线;等值线可由Isentropic曲线方程乘于进气道内收缩段自起动时总压恢复的倒数得到;存在入射激波的起动等值线在设计状态等值线的右侧;有低马赫数溢流的起动等值线在设计状态等值线的左侧;等值线提供了一种联系Kantrowitz和Isentropic曲线的方法。根据以上特性,将等值线应用于高超声速进气道起动问题,并通过实例应用文中的理论判据评估无粘条件下混压式多楔二元进气道来流起动马赫数理论值,与CFD结果吻合较好,误差小于2%,初步探索了理论快速估算进气道起动马赫数的可行性。  相似文献   
19.
马赫数可控的方转圆高超声速内收缩进气道试验研究   总被引:2,自引:0,他引:2  
李永洲  张堃元  孙迪 《航空学报》2016,37(10):2970-2979
基于反正切马赫数分布的弥散反射激波中心体轴对称基准流场,设计了方转圆内收缩进气道,并对其进行自由射流试验和数值仿真,获得该类进气道设计点的工作特性。试验结果表明:进气道顶板压力分布具有反正切曲线特征,总体性能优良且出口涡流区较小,上述设计方法可行有效。设计点时出口总压恢复系数达到0.561,增压比为26.2,临界反压约为135倍来流静压,对应的总压恢复系数为0.210。当带4°攻角时,进气道出口增压比增加49.6%的同时总压恢复系数降低了17.5%。  相似文献   
20.
李永洲  张堃元  孙迪 《航空学报》2016,37(12):3625-3633
针对马赫数可控的方转圆内收缩进气道设计了抽吸方案,并通过风洞试验和数值仿真手段研究了其对进气道性能的影响,获得了进气道设计点的工作特性及自起动性能。试验结果验证了抽吸对提升内收缩进气道性能的有效性:在顶板下洗气流集中区域开槽减小了出口涡流区以及提高了抗反压能力,相对原型进气道,设计点(Ma=6.0)放气流量为0.99%的实际捕获流量时出口总压恢复系数提高了3.8%,临界反压从135倍来流静压提高到了150倍。此外,在顶板分离区开槽可以提高进气道的自起动能力,Ma=5.0,攻角AOA=4°时实现了自起动,此时放气流量为0.78%的进口捕获流量,起动后出口增压比和总压恢复系数分别为30.6和0.600。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号