首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1362篇
  免费   380篇
  国内免费   185篇
航空   1333篇
航天技术   181篇
综合类   245篇
航天   168篇
  2024年   13篇
  2023年   51篇
  2022年   81篇
  2021年   58篇
  2020年   62篇
  2019年   66篇
  2018年   70篇
  2017年   62篇
  2016年   77篇
  2015年   80篇
  2014年   86篇
  2013年   97篇
  2012年   68篇
  2011年   71篇
  2010年   60篇
  2009年   81篇
  2008年   54篇
  2007年   57篇
  2006年   44篇
  2005年   39篇
  2004年   31篇
  2003年   45篇
  2002年   34篇
  2001年   34篇
  2000年   52篇
  1999年   38篇
  1998年   46篇
  1997年   42篇
  1996年   53篇
  1995年   30篇
  1994年   46篇
  1993年   84篇
  1992年   34篇
  1991年   22篇
  1990年   23篇
  1989年   20篇
  1988年   8篇
  1987年   2篇
  1986年   4篇
  1985年   2篇
排序方式: 共有1927条查询结果,搜索用时 15 毫秒
961.
首次推导了变比热斜冲波的基本公式及共衍生形式,分别就求解转角、波角、最大尖劈角、最小马赫数等典型问题,拟就解法及双精度计算机程序,一一作出例题,进入了变化热斜冲波园地。可以预见到的深入研究问题不少,尚待进一步探索。  相似文献   
962.
考虑进气道喉道非均匀流场影响的隔离段直连试验   总被引:4,自引:4,他引:0       下载免费PDF全文
为了研究进气道喉道非均匀流场对隔离段流动特性的影响,设计了能模拟隔离段入射激波和非对称附面层的直连试验装置,并进行了马赫数3.0,3.4和3.8的吹风试验,完成了壁面静压、纹影和NPLS测量,获得了有效的试验数据。结果显示,唇口角对隔离段直连台的起动和耐反压能力影响非常大,随着唇口角度的增加,隔离段的极限反压降低,降低幅度达到22%~32%。与均匀来流相比,激波串很难稳在隔离段入口附近,造成激波串极易被推出隔离段。激波串形态受隔离段入射激波和肩部附近附面层状态的影响较大。NPLS测量系统观察到隔离段内部流场精细结构,如下壁面附面层的转捩现象、激波串的马赫盘、分离和滑移线等。  相似文献   
963.
三维内转式进气道双激波基准流场的设计方法   总被引:10,自引:8,他引:2       下载免费PDF全文
探索了一种三维内转式进气道基准流场的设计新思路,基准流场由特征线方法设计的曲面压缩系统组成,包含一道入射激波和一道末端激波,消除了激波在内通道的连续反射。通过数值模拟对该设计思路进行了验证,结果表明:该双激波轴对称基准流场,前缘激波和末端激波入射位置与设计吻合,末端激波入射在肩点且完全实现消波;特征线计算获取的外壁面马赫数分布和CFD结果吻合较好;经过设计,在喉部截面上流动参数比较均匀,总压恢复系数达到0.91;无粘条件下流线追踪进气道完全继承了基准流场的流动特征,流量捕获系数0.999,喉道总压恢复0.88,与同设计条件流线追踪Busemann进气道相当。  相似文献   
964.
隔离段反压对激波串起始位置的影响   总被引:6,自引:3,他引:3       下载免费PDF全文
使用商业软件FLUENT对三维矩形截面隔离段流场进行了数值模拟。在来流马赫数2.3条件下,通过改变不同的反压来研究反压对不同长高比等截面隔离段和带扩张角隔离段激波串起始位置的影响。结果表明:隔离段长高比对反压与激波串起始位置之间的关系有非常大的影响,当长高比不是非常大时,激波串起始位置与反压成线性关系,当长高比超过此范围后,线性关系不再成立。  相似文献   
965.
拉瓦尔喷管外发生激波反射工况详细分析   总被引:1,自引:1,他引:1  
于勇  徐新文 《航空动力学报》2012,27(9):1988-1996
平面拉瓦尔喷管的环境压力与入口总压的比值从设计工况到第三极限工况(管口处为正激波)逐渐增大时,喷管外的激波现象不同.根据已知的激波反射理论,将设计工况到第三极限工况间的工作状况进一步细分为强斜激波工况、马赫反射工况、双解区和正规反射工况、并将由气流偏转角所表示的发生正规反射和马赫反射的条件用环境压力与总压的比值来表示,找出了强、弱斜激波的环境压力与总压比值的临界值,得到这些临界值随着喷管面积比的变化趋势.最后针对面积比为5的平面拉瓦尔喷管,由理论分析得到其管外发生正规反射、马赫反射、强斜激波反射时对应的压比分别为:0.0841,0.0959和0.2005,并用数值模拟来验证理论分析的正确性.   相似文献   
966.
基于二维曲面基准流场的流线追踪高超声速进气道设计   总被引:1,自引:0,他引:1  
以压力梯度可控设计方法优化后的二维曲激波基准流场为基础,结合流线追踪和截面渐变技术实现了矩形进口、圆形进口以及方转椭圆进气道设计,证明基于二维曲激波基准流场可以设计出各种进出口截面形状的高超声速进气道.利用上述设计方法设计的3种不同进出口形状的高超声速进气道,与相同约束条件下的常规二元三楔进气道进行了对比.数值仿真研究表明:3种非常规进气道设计点无黏流场马赫数分布及总体性能与基准流场接近,具有二维基准流场的特征,波系结构简单,出口畸变较小.此类进气道的总体性能相当,较常规进气道可以显著缩短外压段长度,流量捕获能力更强,非设计点也表现出良好的性能.以上结果表明该设计方法是可行的,值得进一步研究.   相似文献   
967.
利用商用软件数值模拟了5个不同动叶稠度的轴流涡轮基元级的非定常流动情况,以研究动叶稠度对轴流涡轮基元级性能和流动情况的影响.通过对动叶稠度对基元级反力度、叶片进出口气流角、转子和静子中的流场及损失影响情况的考察研究,发现动叶稠度的改变对涡轮基元性能和流动情况的影响与静叶稠度存在重要关系.静叶稠度不变时,动叶稠度的改变通过影响流过涡轮基元级的流量来使基元级的反力度发生变化.当动叶稠度过大时,气流在转子中会过度膨胀加速而产生激波损失及其与附面层干涉形成的流动分离损失.动叶稠度过小时,转子进口会出现极大的正攻角致使动叶吸力面发生大范围的流动分离.静叶稠度一定时,存在一个最佳的动叶稠度,使涡轮基元级呈现最好的性能.   相似文献   
968.
刘君  邹东阳  董海波 《航空学报》2016,37(3):836-846
基于非结构动网格技术和边界装配思想提出了动态间断装配法,该方法能够应用于求解含有间断的流动问题。无论入射激波还是反射激波都是作为边界进行处理,激波运动速度由兰金-许贡纽(Rankine-Hugoniot)关系确定。激波作为动网格的一部分,其运动由动网格技术实现。采用该方法模拟了超声速二维流场中激波与壁面相交问题,并且与捕捉法进行比较,二者的流场结构符合良好,但是在细节上还是存在明显差异。通过对流动结构的分析,得出采用装配方法得到的流场要优于捕捉方法的结论。激波壁面反射的问题模拟,也说明了边界激波装配方法对于复杂的激波相交问题是具有处理能力的。  相似文献   
969.
叶尖间隙效应对跨声速压气机性能影响的研究   总被引:1,自引:3,他引:1       下载免费PDF全文
刘波  茅晓晨  张鹏  杨晰琼  夏树丹 《推进技术》2016,37(8):1401-1410
为了研究叶尖间隙效应对跨声速转子性能的影响机制,以一跨声速级轴流压气机为对象,采用商用软件NUMECA进行三维定常数值求解。结果表明:随着叶尖间隙的增加,峰值效率下降,堵塞流量减小,当叶尖间隙大于0.5τ(τ代表设计间隙)时,峰值效率敏感度曲线与叶尖间隙呈线性关系;综合考虑喘振裕度和峰值效率,该压气机存在最佳叶尖间隙0.5τ,此时的峰值效率和喘振裕度较设计间隙下分别提高约0.22%和3.1%。根据流动特点的不同可以将整个叶尖弦长范围内的叶尖泄漏流分为三个部分,分别为主泄漏区、二次泄漏区和普通泄漏区,且每个泄漏区在叶尖流动结构中的作用各不相同。不同叶尖间隙下压气机的失速过程的主导因素会发生改变。  相似文献   
970.
Sajben跨声速扩压器分离流动中湍流模式数值研究   总被引:1,自引:0,他引:1       下载免费PDF全文
闫文辉  高歌 《推进技术》2016,37(9):1631-1637
为研究湍流模式对激波/湍流边界层干扰内流流动的影响,提高数值计算准确度,使用SA,SST k-ω,非线性EASM k-ω,Gao-Yong四个湍流模式对Sajben扩压器内激波/湍流边界层干扰流动进行了数值计算。对流项采用Roe格式离散,扩散项采用二阶中心格式离散,离散后的控制方程用多步Runge-Kutta显示时间推进法求解。文中展示了四个湍流模式计算得到的壁面压力、速度剖面、摩阻系数等分布。计算值与实验值符合很好,四个湍流模式总体上能够较好地模拟扩压器内激波/湍流边界层干扰复杂分离流动。Gao-Yong湍流模式对分离区内的压力、速度型的模拟更加准确,而非线性EASM k-ω模式对分离再附点位置计算最理想。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号