首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12413篇
  免费   1678篇
  国内免费   1283篇
航空   7738篇
航天技术   2257篇
综合类   1134篇
航天   4245篇
  2024年   89篇
  2023年   428篇
  2022年   448篇
  2021年   516篇
  2020年   531篇
  2019年   523篇
  2018年   400篇
  2017年   398篇
  2016年   444篇
  2015年   482篇
  2014年   607篇
  2013年   574篇
  2012年   811篇
  2011年   841篇
  2010年   678篇
  2009年   704篇
  2008年   772篇
  2007年   683篇
  2006年   585篇
  2005年   579篇
  2004年   522篇
  2003年   525篇
  2002年   351篇
  2001年   369篇
  2000年   369篇
  1999年   297篇
  1998年   269篇
  1997年   264篇
  1996年   239篇
  1995年   174篇
  1994年   184篇
  1993年   149篇
  1992年   123篇
  1991年   111篇
  1990年   97篇
  1989年   133篇
  1988年   55篇
  1987年   33篇
  1986年   6篇
  1985年   3篇
  1984年   1篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
排序方式: 共有10000条查询结果,搜索用时 484 毫秒
461.
UKF方法在脉冲星自主导航中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
针对X射线脉冲星自主导航中的非线性系统滤波问题,将无迹卡尔曼滤波方法应用于自主导航计算过程中。首先,在简述脉冲星导航可行性的基础上,研究了脉冲星自主导航系统的基本原理和实施方案。然后,根据牛顿二体引力模型构建了航天器运动状态方程,根据脉冲到达时间模型建立了系统观测方程,并对二者进行了误差分析和建模。最后,将UKF算法应用于航天器自主导航过程中,仿真结果表明该方法能够实现航天器自主导航信息的解算。  相似文献   
462.
目标检测与跟踪技术广泛应用于交通、医疗、安保和航天等领域.目前,目标检测与跟踪技术面临目标微弱、背景复杂、目标被遮挡等挑战.同时,随着脑科学研究的不断深入,人们对人脑视觉系统的理解逐渐透彻,利用类脑计算解决复杂背景下高精度目标检测与跟踪问题成为相关领域的重要研究方向.本文结合神经工程导向的类脑模型和计算机工程导向的深度神经网络(Deep Neural Networks, DNNs),提出多种基于类脑模型与深度神经网络的目标检测与跟踪算法,包括:基于演算侧抑制的目标检测算法,基于结构 对比度(Structure Contrast, SC)视觉注意模型的弱小目标检测算法和基于记忆机制与分层卷积特征的目标跟踪算法.实验结果表明,将类脑模型和深度神经网络应用于目标检测和跟踪领域,有利于实现复杂条件下的高精度目标检测和鲁棒性目标跟踪.  相似文献   
463.
针对柔性空间机械臂在轨服务应用需求,提出一种基于刚体运动与柔性振动相耦合的空间双臂机器人协同控制方法.首先引入空间位姿变量的概念,构造出面向协同控制目标的Jacobian矩阵,建立柔性空间机器人系统的刚柔耦合动力学模型,基于指定的最小距离得到其运动学逆解,并根据系统动量矩守恒关系及系统的Jacobian矩阵,并根据机械臂末端的运动速度,然后采用阻尼最小二乘法得出关节角度,使柔性空间机器人能够有效完成协同控制和空间避障任务,并基于RecurDyn V7R5软件环境验证算法的正确性.最后,基于SolidWorks和ADAMS虚拟样机建立柔性空间机器人系统的立体CAD模型,并结合空间在轨搬运任务进行模拟仿真,柔性空间机器人关节操作和运动轨迹的仿真结果图验证了本文算法的有效性.  相似文献   
464.
在载体大机动飞行背景下,要求惯性平台具备全姿态的功能。国内现有的三轴陀螺稳定平台(简称三轴平台)不具备全姿态的功能,在内框架增加了限位挡钉以限制内框架角的工作范围,主要是基于内框架角不能工作在接近于?90?的认识。为了准确描述全姿态条件下三轴平台的运动规律,本文指出了传统动力学推导过程中的不足之处,重新建立了三轴平台的动力学模型,基于该模型给出了非奇异的全姿态伺服回路并提出了一种新的全姿态解耦方法,包括力矩解耦和转动惯量解耦。最后,针对转动惯量在框架转动过程中非定值的问题,提出了基于H∞控制理论的变增益控制策略。仿真结果表明,变增益控制器相对定常参数控制器可显著改善三轴平台伺服回路控制的性能。  相似文献   
465.
基于折射方向矢量的地球卫星星光折射导航新方法   总被引:1,自引:1,他引:0       下载免费PDF全文
在星光折射导航中,星光折射视线包含星光折射的大小和星光折射方向两种折射信息,传统的星光折射导航量测量只利用了星光折射大小的信息。但实际上,星光折射方向也是卫星位置矢量的函数,含有卫星位置的重要信息。针对上述问题,提出了一种同时使用两种折射信息的星光折射导航新方法,该方法以星光折射方向矢量为量测量。详细介绍了基于折射方向矢量地球卫星星光折射导航方法的量测量的获取和量测模型的建立,同时对不同影响因素对导航系统性能的影响进行分析。仿真结果表明,该方法的导航精度优于折射视高度和星光折射角两种传统的星光折射导航量测量。  相似文献   
466.
董朝阳  刘扬  王青 《宇航学报》2020,41(2):174-181
针对带攻角(AOA)约束的高超声速飞行器控制问题,提出一种基于非对称时变障碍函数的非线性自适应反步控制方法。首先,将飞行器模型化为严反馈形式,以反步法为基础进行控制器设计。然后通过光滑饱和函数对名义攻角指令信号进行限幅,并保证限幅信号的可导性,限幅产生的误差通过设计辅助系统进行补偿。进而使用障碍函数对攻角指令跟踪误差进行非对称时变约束。针对不确定性和干扰,设计新型自适应律对集中干扰上界进行估计并补偿。最终通过Lyapunov理论证明了闭环系统状态量一致最终有界并且攻角始终满足时变约束。仿真结果表明,本文方法能够在满足攻角约束基础上保证良好跟踪性能。  相似文献   
467.
航天器故障诊断与容错控制技术研究综述   总被引:1,自引:0,他引:1       下载免费PDF全文
沈毅  李利亮  王振华 《宇航学报》2020,41(6):647-656
详细综述了航天器故障诊断与容错控制的研究进展。重点从基于模型的方法、基于数据的方法和基于知识的方法三个方面分别阐述了航天器故障诊断技术的研究进展,并且总结了航天器容错控制技术的研究现状,然后介绍了国内外的一些相关技术项目的开展情况,最后对未来可能的发展方向进行了探讨。  相似文献   
468.
执行器故障下的运载火箭非奇异终端滑模容错控制   总被引:2,自引:0,他引:2       下载免费PDF全文
马艳如  王青  胡昌华  周志杰  梁小辉 《宇航学报》2020,41(12):1553-1560
针对存在未知外部干扰和执行器卡死故障的运载火箭,提出了一种基于非奇异终端滑模面的姿态跟踪控制算法。首先,建立了考虑干扰和执行器卡死故障的运载火箭姿态控制系统多输入多输出系统模型;然后定义了运载火箭姿态跟踪系统模型,针对定义的模型,设计了一种非奇异终端滑模面,使得系统在执行器故障情况下仍能较为精确地跟踪参考信号。基于李雅普诺夫函数证明了运载火箭姿态跟踪控制系统的稳定性和有限时间收敛特性。数值仿真检验了本文基于非奇异终端滑模运载火箭姿态跟踪控制算法的有效性。  相似文献   
469.
高科  宋佳  艾绍洁  刘羿杰 《宇航学报》2020,41(11):1418-1423
针对高超声速飞行器(HSV)再入过程中强非线性、强耦合、气动参数变化剧烈的不确定性的特点,提出一种基于线性二次型调节器(LQR)和自抗扰控制(ADRC)的高超声速飞行器再入段的姿态控制方法。首先,建立高超声速飞行器再入段线性化模型,并采用LQR方法完成了状态反馈控制律设计。然后,结合自抗扰控制技术,设计了扩张状态观测器(ESO)对系统的模型不确定性和外部干扰进行补偿,大幅增强了系统的扰动抑制能力。最后,将得到的高超声速飞行器再入段LQR自抗扰姿态控制器(LQRADRC)应用于高超声速飞行器六自由度仿真,仿真结果表明本文所提出的控制方法能够快速、精确地跟踪角位置指令,并且对系统不确定性具有强鲁棒性。  相似文献   
470.
液体火箭发动机健康监控技术是改进和提高运载火箭、航天器可靠性与安全性的核心技术之一,对其进行研究具有重要的学术价值和工程应用价值。液体火箭发动机健康监控技术的研究主要包括液体火箭发动机故障检测与诊断理论方法、液体火箭发动机健康监控系统两方面。该文介绍了基于模型驱动的方法、基于数据驱动的方法和基于人工智能的方法,阐明了液体火箭发动机故障检测与诊断理论方法的研究现状,通过对美国液体火箭发动机典型健康监控系统的介绍,阐明了液体火箭发动机健康监控系统研究的若干进展及现状,并对液体火箭推进系统健康监控技术的演变趋势作了简要评述。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号