首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   436篇
  免费   88篇
  国内免费   43篇
航空   327篇
航天技术   79篇
综合类   55篇
航天   106篇
  2024年   2篇
  2023年   15篇
  2022年   18篇
  2021年   16篇
  2020年   21篇
  2019年   25篇
  2018年   15篇
  2017年   14篇
  2016年   23篇
  2015年   20篇
  2014年   26篇
  2013年   21篇
  2012年   25篇
  2011年   30篇
  2010年   14篇
  2009年   15篇
  2008年   30篇
  2007年   27篇
  2006年   20篇
  2005年   27篇
  2004年   13篇
  2003年   11篇
  2002年   11篇
  2001年   15篇
  2000年   15篇
  1999年   12篇
  1998年   8篇
  1997年   4篇
  1996年   10篇
  1995年   12篇
  1994年   11篇
  1993年   7篇
  1992年   7篇
  1991年   6篇
  1990年   6篇
  1989年   12篇
  1987年   2篇
  1985年   1篇
排序方式: 共有567条查询结果,搜索用时 62 毫秒
31.
本文基于计算流体力学(CFD)方法研究了直升机尾部流动分离的特征及机理,采用了加装导流片的方式对尾部流动进行控制,并计算分析了导流片的位置、安装角和尺寸对机身减阻效果的影响。计算结果表明,导流片能对机身尾部分离涡进行有效抑制,从而减小机身阻力;导流片安装在尾舱门与尾梁交接处两侧减阻效果较好,导流片尺寸对减阻效果影响显著,巡航状态选定的导流片方案相比无导流片机身可减阻15.8%,且可使机身横向静稳定性略有提升。  相似文献   
32.
为探索倾斜/后掠静子叶片对风扇单音噪声的降噪机理并指导低噪声风扇的设计,采用基于三维黏性非定常雷诺平均数值模拟(URANS)和管道声类比理论(Ducted Acoustic Analogy,DAA)的流场/声场混合计算模型(CFD/AA)研究了不同转子叶尖间隙、倾斜静子、后掠静子等对NPU-Fan单音噪声的影响。计算结果表明:随着叶尖间隙增加,在1BPF (Blade Passing Frequency)和2BPF处,风扇前传、后传气动噪声均会增加,且1BPF处单音噪声增量大于其它谐频。在研究倾斜及后掠叶片的降噪机制时,须将管道特征函数与声源的耦合过程包含在内,并且要考虑真实风扇的尾迹特性及其向下游的输运过程。风扇静子负倾斜可以提升风扇的气动效率,但会增加噪声的声功率级;正倾斜叶片能够降低噪声声功率级,但风扇气动性能会有所降低。随着倾斜角的增加,降噪量增大,当倾斜角为+30°时,各谐波阶次的降噪量均超过2.3dB。后掠静子叶片相较于倾斜设计具有更好的气动性能和降噪效果。30°后掠角对于各谐波阶次的前传噪声降噪量均大于6.3dB,降低后传噪声超过10dB。正倾斜及后掠静子的降噪效果与噪声谐波阶次、传播方向紧密相关,谐波阶次越高,降噪效果越明显。倾斜-后掠综合设计方案对于前传噪声拥有最好的降噪效果,其综合了倾斜和后掠两者的优点。  相似文献   
33.
刘奇林  刘向阳  李猛 《航空学报》2015,36(12):3868-3875
面向未来行星表面探测任务,航天服的活动性能需要进一步提高。为此,应改进航天服软关节的结构形式。根据等张力体形状内部承压时不存在周向应力的理论,在该曲面周向上加入褶片结构,设计出了带褶皱的等张力体关节,使之能够沿周向弯曲或伸展。为验证关节性能,利用柔性单自由度关节测量设备,进行了多次加卸载和不同运动范围的力矩特性研究,分析了关节的几何形态、等容性以及主应力状态,并将该关节与无褶皱的等张力体关节和平褶式关节进行了比较,最后讨论了关节的优化方向。结果表明,在测试的0°~80°范围内,关节力矩较小,最大容积变化为1.6%。关节弯曲时,等张力体曲面上周向应力仍可忽略不计。首次加载与之后的加载有一定的差异,而不同的运动范围对关节活动性能无影响。与其他两种关节形式比较,带褶皱等张力体关节在几何尺寸、运动形态和活动性能上都具有一定的优势。此外,该关节可在结构和材料方面进一步优化。  相似文献   
34.
光纤λ/4波片的相位延迟量与对轴角度误差是光纤电流互感器最主要的误差源之一.研究通过琼斯矩阵分析法建立反射式光纤电流互感器的偏振光学模型,进而得到了相位延迟量与对轴角度误差和标度因数之间的关系,为误差补偿技术提供理论支持.并且进行了实际研制,使得1/4波片消光比可小于0.2dB.  相似文献   
35.
通过理论推导和数值仿真研究了湿热效应对碳纤维复合材料层合板不同修理构型的振动特性影响。基于哈密顿原理和一阶剪切变形理论,同时考虑温湿度场的等效原理建立了湿热环境下多自由度复合材料层合板的本构方程,并利用有限元法推导了层合板在湿热作用下的振动控制方程。利用商用软件ABAQUS建立了阶梯型胶接修理模型,从振型分析的角度对比了含、不含附加补片的单/双面胶接修理构型的振动特性,并讨论了温度、湿度、温湿度对不同修理构型振动特性的影响。结果表明:湿热效应影响下铺设附加补片可避免胶接区域局部变形过大,在提高结构的刚度和稳定性的同时延缓湿热屈曲现象的发生;含有附加补片的双面胶接修理构型可避免结构产生附加弯曲,提高修理后结构的稳定性;温湿环境共同作用比湿环境、热环境单一作用对复合材料层合板固有频率的影响大,且含附加补片的双面胶接修理构型较单面胶接修理构型对温湿度影响的敏感性低。  相似文献   
36.
超高速干气密封扰流效应及抑扰机制   总被引:1,自引:1,他引:0  
王衍  胡琼  肖业祥  黄国庆  朱妍慧  葛云路 《航空学报》2019,40(10):123072-123072
干气密封在高速时优异的动压性能使其应用范围从传统的压缩机、离心机等中高速设备逐渐扩大到航空发动机、(微型)燃气轮机等超高速设备中。基于实际超高速工况特点,对转速范围为10 000~120 000 r/min时的干气密封性能进行了系统性仿真计算,结果发现:在一定几何参数和工况参数下,类似于气浮轴承的微振动现象,干气密封会出现疑似受气体压力波动流影响的开启力、泄漏量与转速非正相关变化的扰流现象,尤其在高压、大膜厚、小槽深时的扰流效应愈加显著;在转速持续增大过程中,干气密封微尺度流场会出现二次拐点现象,且一次拐点发生转速与设计参数有关,而二次拐点发生转速基本约为90 000 r/min。同时结合导流织构的设计思路,进一步研究了超高速下干气密封槽底导流织构的驱动导流效应,结果表明:加设导流织构后,承载效果明显提高,拐点发生工况延后且压力波动区域被压缩。表明导流织构具有良好的抑制扰流、维持开启力与转速持续正相关的作用,在此基础上,进一步阐释了导流织构的抑扰机制,以期为突破干气密封在超高速工况下的应用壁垒提供新思路。  相似文献   
37.
程洪杰  赵谢  赵媛  高蕾 《推进技术》2019,40(11):2444-2453
针对导流锥结构参数对内弹道流场耦合影响问题,基于动态分层动网格技术,构建了含导弹运动和二次燃烧的内弹道数值模型,并验证了模型可靠性。解耦分析了导流锥半径、高度及冲击高度对内弹道流场特性和载荷的影响。结果表明:导流锥的结构直接决定燃气飞溅现象的产生和流场结构的紊乱程度,导流锥的半径、高度和冲击高度的改变会对燃气反射点的位置、二次燃烧的区域以及剧烈程度产生影响;结构优化后的导流锥,较大程度地缓解了冲击现象,获得了较好的平滑效果,筒底压力较实验装置降低了24.5%。  相似文献   
38.
介绍了连续纤维增韧陶瓷基复合材料的结构组成以及陶瓷基体材料、增强体纤维、界面层的发展情况,概述了连续纤维增韧陶瓷基复合材料在国内外航空发动机热端部件上的应用。从工程运用角度,探讨了连续纤维增韧陶瓷基复合材料工程化运用面临的问题及解决措施。结合我国航空发动机的发展需求及连续纤维增韧陶瓷基复合材料研究、应用现状,提出了加快连续纤维增韧陶瓷基复合材料研究及工程化应用的建议。  相似文献   
39.
针对航空涡轴发动机在使用过程中发生的空中停车故障,通过对损伤件及其断口进行宏观和微观检查、金相组织观察、化学成分分析,以及损伤件的温度分析和磨痕对比,确定了首断件。结合发动机参数分析和质量复查,查明故障原因为发动机返厂检修重新装配时,前篦齿封严环与导流盘在规定的压紧螺母拧紧力矩下轴向压缩量偏小,在高转速状态出现轴向间隙,前篦齿封严环松动;前篦齿封严环与静子封严环径向间隙不均匀,切向摩擦力增大造成前篦齿封严环与导流盘相对转动而剧烈摩擦,局部温度升高,导流盘破裂,导致发动机空中停车。通过计算和螺母拧紧力矩试验进一步研究了故障机理,并针对故障机理开展部件和整机模拟试验,复现了故障现象。  相似文献   
40.
锥柱形加筋金属膜片变形的数值仿真分析   总被引:6,自引:0,他引:6  
概述了金属膜片贮箱膜片结构的研究现状,提出了锥柱形加筋膜片整体结构变形问题。根据试验情况建立了该膜片的有限元模型,并基于非线性有限元软件MSC.Marc进行了数值模拟,分析了膜片结构的变形过程和变化规律,通过对加筋结构的分析解释了膜片变形的机理,得到了一些控制膜片失效的方法。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号