首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   491篇
  免费   145篇
  国内免费   35篇
航空   506篇
航天技术   58篇
综合类   63篇
航天   44篇
  2024年   9篇
  2023年   29篇
  2022年   24篇
  2021年   39篇
  2020年   29篇
  2019年   43篇
  2018年   21篇
  2017年   41篇
  2016年   35篇
  2015年   22篇
  2014年   27篇
  2013年   19篇
  2012年   32篇
  2011年   42篇
  2010年   22篇
  2009年   21篇
  2008年   21篇
  2007年   16篇
  2006年   13篇
  2005年   11篇
  2004年   15篇
  2003年   7篇
  2002年   16篇
  2001年   9篇
  2000年   7篇
  1999年   9篇
  1998年   5篇
  1997年   13篇
  1996年   10篇
  1995年   11篇
  1994年   9篇
  1993年   5篇
  1992年   8篇
  1991年   7篇
  1990年   8篇
  1989年   8篇
  1988年   5篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
排序方式: 共有671条查询结果,搜索用时 16 毫秒
661.
针对钛合金在普通铣削(CM)时因切削速度低而面临的切削力大、薄壁工件变形大、加工效率低、刀具磨损严重等问题,采用高速超声振动铣削(HUVM)方法加工钛合金,实验研究其加工表面质量和切削力。从运动学角度出发对HUVM方法进行运动学分析。搭建包括超声振动系统、加工系统及测量系统在内的高速超声振动铣削实验平台。采用单因素实验对比CM和HUVM这2种方法对钛合金加工切削力和表面质量的影响规律。研究结果表明:与CM加工相比,HUVM加工可以使切削力降低32.6%~35.3%。并且HUVM加工表面粗糙度虽略有增加,但是表面结构可以更加均匀;此外,HUVM加工表面残余应力均为压应力,其绝对值随着每齿进给量和切削速度的增大而降低,而CM加工表面残余应力为拉应力。  相似文献   
662.
研究了不同铣削工艺对疲劳损伤的影响规律。对采用4种工艺加工的试样进行了650℃高温空气环境下的低周疲劳试验。分别采用粗糙度表征方法、背向散射电子衍射技术和纳米压痕测试以获得试样的表面粗糙度、残余应力和加工硬化。测试结果表明,采用电火花线切割方法加工的试样疲劳寿命最高(平均80 360循环),有最低的表面粗糙度(0.226)和残余应力;而钝刀具加工的试样疲劳寿命最低(平均43 978循环),相较于电火花线切割试样的疲劳寿命下降了45%。扫描电镜表征结果表明,疲劳裂纹主要由粗大的非再结晶晶粒和加工缺陷引发。铣削加工方法和参数对疲劳损伤程度和疲劳寿命有重要影响。  相似文献   
663.
针对基于磁流体动力学(MHD)的角速度传感器中源级输出电阻波动的抑制问题,主要分析了MHD角速度传感器金属电极与镓合金的接触电阻特性,以及随着应力改变和接触面粗糙度的变化规律。通过理论推导建立了传感器中固-液接触电阻的理论模型,并据此使用COMSOL仿真了不同接触应力下接触电阻的变化情况;使用接触角测量仪分析了电极粗糙度对接触电阻的影响,电极材料为铝或铁时,粗糙度由1.6增加到3.2时,接触角增加4°~10°。仿真表明,MHD角速度传感器的接触电阻随着接触应力的增加而减小,在1kPa应力变化范围内,固-液接触电阻急剧变化。接触角测试表明,随着粗糙度的增加,接触角增加,浸润性变差。  相似文献   
664.
刘重晓  王江峰 《航空学报》2023,(16):106-119
针对滑移流区化学非平衡流中的气动热环境预测问题,采用多组分化学非平衡纳维-斯托克斯(N-S)方程对轨道验证飞行器(OREX)进行数值模拟,对比了有限催化和非催化、滑移和无滑移壁面条件下的气动加热,研究了壁面催化和滑移效应对气动热的影响规律,并分析了影响气动热的主要机制。结果表明:壁面催化和滑移效应均会影响流场物理量分布,高度为92.82 km时对激波脱体距离的影响较为明显;随着高度减小,有限催化与非催化壁面间的热流偏差增大,而滑移与无滑移壁面间的热流偏差减小;高度低于92.82 km时有限催化壁面计算得到的驻点热流值与飞行数据吻合较好,偏差均在11%以内;机制分析发现,催化效应对壁面附近的组分分布影响较大,滑移边界条件中的温度跳跃条件对壁面附近的温度分布影响显著。  相似文献   
665.
基于康达效应的同向流矢量技术控制效率高、推力损失低,具备提高飞行器隐身性能的巨大潜力。为了探究马赫数Ma 0.35主流下二次流类型、二次流阵列个数、康达壁面半径R和终止角θ等参数对同向流矢量控制的影响,利用天平研究了9种不同的喷管模型的力学特性,获得矢量偏转力随次主质量流量比变化的控制规律。结果表明,主喷管高和康达壁面半径的比值H/R是对矢量偏转效率和控制稳定性最重要的因素,H/R越低,控制效率越高,控制曲线线性度越高;使用三个振荡射流阵列作为二次流的条件下,H/R从0.5减小到0.43,控制效率提高近49%,与使用定常射流相比,使用振荡射流作为二次流,显著提高了控制效率,增强了控制稳定性;对比分析显示,使用两个或三个振荡二次流阵列、H/R为0.43且θ为90°时,矢量控制效果最好。进一步地研究表明,H/R和θ对矢量控制效率的影响最大,而θ对控制曲线线性度几乎没有影响,本文研究还发现二次流阵列个数低于两个或H/R高于0.6时,控制特性急剧恶化。本文研究可为同向流矢量喷管的工程设计提供理论支撑。  相似文献   
666.
部分稳定氧化锆(Partially stabilized zirconia,PSZ)陶瓷因其优越的性能在航空航天工业等领域有广泛的应用。表面粗糙度是评价PSZ陶瓷磨削加工水平的关键指标,为了降低磨削表面粗糙度的预测误差,提出了一种基于相关性分析与卷积-双向长短期记忆神经网络(Convolution-bidirectional long short term memory neural network,CNN-BiLSTM)的PSZ陶瓷磨削表面粗糙度声发射预测模型。通过分析磨削声发射信号特征值与磨削表面粗糙度值之间相关性,筛选出磨削声发射信号与磨削表面粗糙度之间的最相关频段和特征矩阵,作为CNN-BiLSTM神经网络的输入参数以降低磨削表面粗糙度声发射预测的误差。研究结果表明,基于相关性分析与CNN-BiLSTM神经网络的PSZ陶瓷磨削表面粗糙度的平均预测误差低于3.92%。  相似文献   
667.
使用PCD立式铣刀对聚合物浸渍裂解法(PIP)制备的SiC_(f)/SiC复合材料开展单因素铣削试验,通过对加工中产生的切削力和加工后的表面粗糙度进行测量,分析了铣削工艺参数对其的影响;对加工表面、纤维断口进行SEM分析,讨论了SiC_(f)/SiC复合材料加工表面的形成。研究结果表明,表面粗糙度与切削力的变化趋势相同,高主轴转速和小切削宽度有利于得到表面粗糙度较小的加工表面;近孔洞区域与远离孔洞区域的材料去除方式不同;材料中纤维发生面内偏移和层间屈曲,纤维存在多种去除方式。  相似文献   
668.
以氧化铁、碳化硅和氧化钴为高辐射填料,通过控制涂层浆料固含量和喷涂次数制备出了不同表
面粗糙度的高辐射涂层。用AE 辐射计测试了不同表面粗糙度高辐射涂层的室温发射率,根据GB/ T 7287—
2008 测试了涂层的800℃高温发射率,用扫描电子显微镜和光学显微镜观察了涂层表面形貌,用扫描探针显微
镜测试了涂层的表面粗糙度。结果表明,在辐射换热条件下高辐射涂层表面粗糙度在2. 75 ~225. 70 μm 变化
时,其室温发射率发生了0. 02 ~ 0. 05 的变化。而在导热换热条件下高辐射涂层表面粗糙度在2. 75 ~ 36. 99
μm 变化时,其高温发射率没有变化。  相似文献   
669.
本文以Al-50wt%Si高硅铝合金为研究对象,采用单因素试验方法进行无涂层硬质合金刀具干式铣削试验,分析切削参数对刀具磨损和表面粗糙度的影响。结果表明:表面粗糙度受每齿进给量的影响最显著,随每齿进给量的增加而增加,当每齿进给量从0.07 mm/z增加到0.16 mm/z时,表面粗糙度增加2倍;刀具磨损受切削速度的影响最显著,随切削速度的增加而增加,当切削速度从140 m/min增加到260 m/min时,切削总长度降低3倍,而刀具后刀面磨损量仅是260 m/min速度下的0.8倍;表面粗糙度随刀具磨损的增加呈现先增加后降低的变化趋势,切削长度从350 mm增加到1 750 mm,刀具磨损量平均增加4.5倍,而表面粗糙度却下降2倍;硬质合金刀具主要的磨损形式为磨粒磨损、崩刃。  相似文献   
670.
针对线性摩擦焊后风扇叶片的结构特点及加工工艺难点,制定了焊后叶片的加工工艺路线,通过预留非均匀余量和采用同步半精铣-精铣加工方法,减少了加工过程中的让刀;采用前后缘-叶身一体对称加工方法,解决了单面铣削加工中存在的变形过大问题;最后对线性摩擦焊后叶片进行了数控加工试验。结果表明,精铣后叶片表面粗糙度可以达到Ra0.54μm,叶片轮廓度、位置度和扭转度等满足图纸要求,可有效提高线性摩擦焊后叶片加工精度和表面质量。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号