首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1809篇
  免费   432篇
  国内免费   158篇
航空   2203篇
航天技术   62篇
综合类   94篇
航天   40篇
  2024年   19篇
  2023年   60篇
  2022年   101篇
  2021年   103篇
  2020年   103篇
  2019年   70篇
  2018年   63篇
  2017年   84篇
  2016年   100篇
  2015年   86篇
  2014年   90篇
  2013年   90篇
  2012年   97篇
  2011年   125篇
  2010年   79篇
  2009年   104篇
  2008年   78篇
  2007年   84篇
  2006年   62篇
  2005年   63篇
  2004年   77篇
  2003年   65篇
  2002年   63篇
  2001年   41篇
  2000年   44篇
  1999年   41篇
  1998年   63篇
  1997年   41篇
  1996年   56篇
  1995年   41篇
  1994年   44篇
  1993年   46篇
  1992年   29篇
  1991年   28篇
  1990年   15篇
  1989年   35篇
  1988年   3篇
  1987年   4篇
  1986年   1篇
  1984年   1篇
排序方式: 共有2399条查询结果,搜索用时 46 毫秒
221.
由于受限于“尺寸效应”,负荷增大使中小航空发动机压气机性能降低的特征较为明显,这对高负荷压气机设计提出了更大挑战.为深入研究小流量、高负荷轴流压气机,提出了2级高负荷轴流压气机的设计原则和总体要求.针对平均级负荷系数为0.42的高负荷特点,采用强根部、大反力度、低展弦比、叶片端弯和悬臂静子等气动设计方法以提高压气机性能.用全3D数值模拟方法对设计结果进行了校核,分析了其性能和流场结构.为了对设计、计算结果进行验证确认,对压气机进行了试验测量,计算与试验结果吻合良好.结果表明:高负荷轴流压气机设计点的压比为2.73,绝热效率为0.865,综合裕度为15.3%,达到了设计指标要求.  相似文献   
222.
马艳红  曹冲  张大义  张蓟欣  洪杰 《推进技术》2016,37(8):1551-1559
几何构型对叶片应力的影响规律是高负荷弯掠叶片应力优化的关键。建立了带有弯掠与扭曲结构特征参数的叶片力学模型,研究了掠形与扭转构型对叶片应力分布的影响。结果表明:弯掠造成的附加弯矩与叶型截面形心位置紧密相关,弯曲应力极值可能出现在叶型前缘、尾缘和叶背中部三个区域;扭转造成的附加扭矩的大小由叶尖到叶根逐渐增加,在叶片自然扭曲率较小时,附加扭矩为负方向,其作用致使叶片解扭;对于典型弯掠叶片,其离心力作用下的径向力载荷决定着自身的截面平均应力水平,而附加弯矩和扭矩载荷决定着截面的应力分布形式。在给定的叶型条件下,可通过掠形方式的调整使附加弯矩与扭矩相抵消,降低叶片峰值应力30%以上。  相似文献   
223.
高压涡轮转子叶片内部气流组织方式研究   总被引:4,自引:0,他引:4  
朱兴丹  谭晓茗  郭文  张靖周  王永明 《航空学报》2014,35(12):3273-3282
为了获得涡轮转子叶片内部冷却结构的冷却性能,采用气热耦合计算的方法分析了在相同冷气总量条件下3种不同的气流组织方式对叶片冷却效果的影响,并选择其中相对优化的冷却结构进行了转速对进气压力和综合冷却效率的影响研究。结果表明,B型结构叶片气流组织较为合理,表面温度较为均匀,整体冷却效率得到有效提高;哥氏力和离心浮升力的存在导致冷却气流发生相应偏转,前缘滞止线随转速增加由压力面向吸力面偏移,同时前缘气膜出流随转速发生变化,随着转速增大,压力面综合冷却效率提高,吸力面综合冷却效率下降。  相似文献   
224.
上下游干涉对转子叶片颤振特性的影响   总被引:1,自引:0,他引:1  
杨慧  沈真  郑赟 《航空动力学报》2016,31(5):1170-1177
使用自行开发的非定常流动数值模拟程序,分别考虑上、下游叶排干涉作用对转子叶片的颤振特性进行了研究,分析尾迹和势干扰对气动阻尼的影响规律.对转子叶片表面非定常压力进行傅里叶变换,使用能量法计算气动阻尼,研究不同叶片排轴向间距下气动阻尼的变化.通过考虑转静干涉效应的气动阻尼与单转子结果对比,总结了干涉作用对叶片颤振特性的影响规律;结果表明:上游导叶与转子一倍弦长间距时,获得正气动阻尼,与单转子预测的气动弹性稳定性结果相反.说明在进行颤振特性预测时必须考虑转静干涉作用;尾迹和势干扰的强度均随着轴向间距值的减小而加强,且都会加剧叶片气动弹性失稳.   相似文献   
225.
为了排除某航空发动机DD6镍基单晶高温合金涡轮转子叶片在室温振动试验中发生的裂纹故障,对故障叶片进行了外观检查、断口分析、表面检查、解剖检查、化学成分分析、金相检查、应力分布计算及热模拟试验,确定了故障叶片裂纹的性质和产生原因.结果表明:涡轮转子叶片裂纹为高周疲劳裂纹,叶片局部区域存在异常的γ'筏排组织是导致该叶片产生早期疲劳开裂的主要原因,且附近区域腐蚀过重及结构上处于应力集中区,也促进了疲劳裂纹的萌生及扩展.针对这些故障,建议优化叶片结构并对腐蚀检查进行严格监控,防止出现γ’筏排组织及腐蚀过重现象,从而避免此类故障再次发生.  相似文献   
226.
针对涡轮进口导向叶片进口马赫数低、前部负荷小的特点,采用前缘截断思路构建了高负荷涡轮叶型,并采用Pritchard 11参数法进行重构设计。采用数值计算和平面叶栅试验开展了研究和分析。结果表明:高负荷叶型吸力面前缘马赫数显著提升,增加了叶片前部负荷。喉部峰值马赫数基本不变,但位置前移,负荷分布均匀性提高。叶型的马赫数特性和攻角特性表明,高负荷叶型在不同攻角和马赫数下,均能获得较低的总压损失,其中在设计马赫数,叶型负荷提升1倍的情况下,总压损失系数降低259%。   相似文献   
227.
为了避免涡轮叶片叶根倒角低周疲劳开裂故障的发生,需借助叶根倒角特征模拟件对叶根低周疲劳强度进行考核。基于几何等效相似和载荷工况等效原则,设计了一种真实叶根倒角的特征模拟件。特征模拟件的榫头/叶身沿着周向投影宽度比例、缘板外侧与榫头外侧距离、缘板厚度、倒角半径等重要几何参数均与真实叶片一致。基于线弹性本构,采用Abaqus软件计算了特征模拟件在等效载荷工况下的应力分布。计算结果表明,特征模拟件的最大应力为187.6 MPa,出现在凸台过渡区倒角处,最危险点第一主应力方向为l1=0.1141、m1=0.9873、n1=-0.1103,均与真实叶片对应部位的应力情况吻合,说明该叶根倒角特征模拟件设计合理,可用于考核真实涡轮叶片倒角的低周疲劳强度。  相似文献   
228.
针对2019年A320飞机运行中因其配装的PW1100G发动机LPT3叶片断裂频发空中停车等问题,首次采用定量风险评估、 根原因分析和强制纠正措施决策的组合技术制定单边适航指令,精准解决中国机队安全监控技术难题。采用区间和比例的风险评估 方法对机队风险指标和符合性时间期限分析计算;分析LPT3叶片失效机理,梳理LPT3叶片断裂根原因;提出可选纠正措施,对不同机 队的风险水平决策。结果表明:南航机队风险高达1.64×10-8,远超过可接受的安全风险水平;起飞阶段未减推力引发机匣共振并变形, 叶片材料抗撞击能力不足,导致LPT3叶片断裂;开展减推力爬升改装,并对中国机队不同风险实施不同的飞机对偶运行时间期限。为 国内外机队安全监控提供了可借鉴的安全风险评估和管理方法。  相似文献   
229.
为了进一步提高风扇/压气机的负荷水平,对串列叶片进行了研究。采用理论方法分析了串列叶片相对于常规叶片的 负荷优势区间,并利用低速大尺寸压气机试验台进行了对比试验验证。结果表明:当负荷系数大于0.46时,串列叶片表现出明显 的优势,可以将负荷系数为0.46作为串列叶片优势区间的临界点。采用数值模拟方法分析了亚声速和超声速串列叶型前后排的 相互影响机制,总结了串列叶型流动控制原则和优化设计思路,给出了典型亚声速和超声速叶型的优化设计结果。结果表明:优 化后的亚声速和超声速串列叶型设计点损失分别减少了6%和20%,可用攻角范围分别拓宽了2°和0.5°。完成了负荷系数为0.4 的双级风扇串列叶片出口级方案设计论证。结果表明:与常规方案相比,在常用转速范围内,串列叶片方案的压比明显提高,中低 转速堵塞流量和等熵效率也明显提高。  相似文献   
230.
钱正明  李概奇  米栋  艾兴 《航空动力学报》2021,36(11):2372-2378
针对某涡轴发动机的涡轮叶片,建立了考虑应力松弛的蠕变-疲劳寿命分析方法。通过在黏塑性理论框架内耦合蠕变损伤,对某高温合金的非线性蠕变变形进行了数值模拟。结果表明:基于对某涡轮叶片的弹塑性-蠕变分析研究,明确了叶片上前缘和尾缘等关键部位的蠕变损伤及其演化规律,也为确定叶片上的局部危险点提供了一种方法。该模型针对弹塑性应力应变曲线计算误差小于5%,而针对蠕变曲线的模拟精度则处于材料蠕变变形固有属性分散范围内。借助于线性损伤累积寿命理论,分析得到了某涡轮叶片尾缘孔局部考虑了应力松弛的蠕变-疲劳寿命,从而为叶片寿命评价提供了更为合理、工程化应用更好的方法。   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号