首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1393篇
  免费   284篇
  国内免费   135篇
航空   1085篇
航天技术   193篇
综合类   235篇
航天   299篇
  2024年   8篇
  2023年   50篇
  2022年   51篇
  2021年   59篇
  2020年   58篇
  2019年   71篇
  2018年   54篇
  2017年   47篇
  2016年   44篇
  2015年   51篇
  2014年   76篇
  2013年   64篇
  2012年   81篇
  2011年   78篇
  2010年   84篇
  2009年   71篇
  2008年   89篇
  2007年   69篇
  2006年   63篇
  2005年   70篇
  2004年   66篇
  2003年   65篇
  2002年   40篇
  2001年   62篇
  2000年   33篇
  1999年   23篇
  1998年   25篇
  1997年   23篇
  1996年   22篇
  1995年   39篇
  1994年   24篇
  1993年   35篇
  1992年   30篇
  1991年   31篇
  1990年   19篇
  1989年   11篇
  1988年   7篇
  1987年   6篇
  1986年   3篇
  1985年   4篇
  1984年   2篇
  1983年   2篇
  1981年   2篇
排序方式: 共有1812条查询结果,搜索用时 62 毫秒
841.
付晓琴  李阳辉  卢昱锦  肖天航  童明波 《航空学报》2021,42(6):124351-124351
探索平板水漂运动的流体力学现象机理对飞行器着水问题的研究有重要的参考价值。基于有限体积法和k-ε RNG湍流模型求解非定常雷诺平均Navier-Stokes(URANS)方程,采用流体体积分数(VOF)模型与速度入口造波法构造数值波浪水池,并结合整体动网格方法,完成二维平板在静水面与波浪水面的水漂运动数值模拟。在与试验值和理论值对比的基础上,讨论初始姿态角、投掷角度与投掷速度对水漂运动的影响。进一步研究不同波浪参数和波浪位置对平板水漂的影响,并从能量角度展开分析。结果表明:20°姿态角平板能以最小的投掷速度实现水漂运动;运动中平板能量的相对损失率受初始投掷速度的影响较小,主要受投掷角和姿态角作用,随投掷角或姿态角的增加而增大。波浪情况下,在上行波位置触水的平板能够获得更大的接触面积,而更长的触水时间发生在波谷处;因此,这两个位置触水的平板在水漂运动过程中的相对能量损失大,其数值变化比波峰位置大5%左右;在上行波位置触水时,平板的速度衰减与相对能量损失随着波高的增加而增大,而波峰位置则有相反的变化趋势。  相似文献   
842.
利用 PIV 测量得到的速度场数据重构空间压强场是一种新颖的压强测量方法。目前国外的一些仿真计算和风洞实验已经证明了该方法的可行性和有效性。本文首先详细介绍了基于 PIV 速度场测量重构压强场的基本原理---两种压强梯度计算方法(拉格朗日方法和欧拉方法)和两种压强积分方法(平面 Poisson 法和直接空间积分法),然后从速度场测量、压强梯度计算和压强分布计算3个方面综述了基于 PIV 速度场测量重构空间压强场的关键技术及相关的研究进展,最后从 PIV 速度测量的改进、参数的优化设置、算法的改进与创新、探索并完善3D压强分布计算、可压缩流动条件下的压强重构技术等5个方面探讨了该方法的发展方向,以期引起国内同行对该技术的高度重视并为其进一步发展提供一定的参考。  相似文献   
843.
利用诱导空间非相干技术平滑的KrF准分子(248nm)激光驱动带有烧蚀层的平面靶,研究激光空间均匀性对产生完整飞片的影响,结果表明激光不均匀性在2%以下,能够产生完整的高速飞片,且完整飞片能够维持20ns以上不破裂;当激光不均匀性达到5%,激光引入流体力学不稳定性种子应很强,冲击波在靶内输运过程中不稳定性不断发展增强,到靶背时强到足以使飞片解体甚至气化,不能产生完整的飞片。为了获得尽可能高的飞片速度,采用激光与烧蚀层参数不匹配方法,使冲击波对飞片作多次加速。利用功率密度为1012 W/cm2的KrF激光与含50μm Kapton烧蚀层的5μm铝飞片作用,得到速度约10km/s的高速飞片,与模拟结果吻合得很好。  相似文献   
844.
黄勇  李小将  王志恒  李兆铭 《宇航学报》2014,35(12):1412-1421
针对卫星编队飞行相对位置协同控制问题,基于编队卫星相对运动非线性动力学方程和一致性理论设计了两种自适应协同控制器。首先,在卫星质量不确定和星间信息交互存在通信时延的条件下,设计了一种全状态反馈自适应协同控制器,并证明了该控制策略对空间摄动力的鲁棒性。其次,进一步考虑速度信息不可测的条件下,采用滤波器设计了一种无速度反馈的自适应协同控制器。最后,以编队构型重构为例对两种自适应协同控制器进行了仿真校验。仿真结果表明:两种自适应协同控制器均可有效应用于卫星编队飞行相对位置的协同控制,能够保证编队卫星对各自期望轨迹跟踪的同时暂态保持编队构型的稳定,具有较高的控制精度。  相似文献   
845.
张阳  周洲  郭佳豪 《航空学报》2021,42(9):224977-224977
以分布式电推进(DEP)垂直起降(VTOL)无人机(UAVs)为研究背景,采用基于混合网格技术及k-ω SST湍流模型求解雷诺平均Navier-Stokes (RANS)方程的多重参考系(MRF)/动量源方法(MSM),对分布式涵道风扇-机翼构型的喷流气动特性进行了高精度准定常的数值模拟。通过对涵道单元/涵道-机翼的实验验证了零来流条件下数值计算方法的可靠性和高效性,进而对分布式涵道风扇-机翼构型的气动优势进行了分析讨论,最后对分布式涵道风扇的转速、间距、涵道风扇旋转方向等因素进行了数值模拟。研究表明:相比于单个涵道风扇,分布式涵道风扇通过喷流的耦合作用大大提升了机翼的气动特性;分布式涵道风扇不同转速的喷流对截面翼型的压力分布和周围流场的速度分布影响具有一定的相似性,但具体数值随转速变化;分布式涵道风扇间距的增大会改善涵道风扇单元的拉力特性,机翼的气动特性会随之降低;涵道风扇合理的旋转方向不仅会使得下翼面喷流区域的高压过渡更加平缓,静压数值更加连续,而且内侧涵道风扇也会被外侧喷流所激励,对机翼的升力特性产生更好的诱导效果。  相似文献   
846.
为了提高微波雷达信号处理系统的实时性和稳定性,文章设计并实现了一种基于DSP+FPGA系统架构的雷达实时信号处理系统。本系统以GCl012B、FPGA和DSP器件为硬件核心,采用软硬件相结合的方式,具有很好的控制和运算能力,能够实现对非合作运动目标搜索、跟踪等参数的测量以及角误差求取、AGC控制等功能。实际应用验证了该系统设计的正确性和可靠性。同时该系统易于实现,具有很好的灵活性、稳定性和实用性。  相似文献   
847.
分析了军事通信中传统恒模盲均衡算法(CMA)的基本原理,并针对此算法收敛速度慢、收敛速度与稳态剩余误差之间存在矛盾的缺点,提出一种改进的变步长恒模盲均衡算法(VASCMA).理论分析和实验仿真证明改进后的算法较传统算法具有更好的收敛效果.  相似文献   
848.
通过数值方法研究了高超声速级间分离测力试验中腹支撑对一级、二级弹体气动力的干扰规律,对试验中采用的“归零”干扰扣除方法得到的修正结果进行验证。主要研究不同迎角、级间距下腹支撑干扰对一级、二级流动结构和气动力特性的影响。研究结果表明,腹支撑干扰引起腹支撑一侧喷流出射高度增加。而腹支撑干扰引起的一级轴向力干扰量相对于轴向力原始量较小,一般小于2%,基本不需要进行修正。二级轴向力腹支撑干扰量百分比在0.1D(D 为模型参考直径)级间距、2°迎角状态最小,但也达到了10%,需要考虑进行修正。0.1D 级间距时二级法向力腹支撑干扰量采用“归零”修正方法的误差最小,约为0.005,基本可以接受。法向力的“归零”修正更适合于在0.1D 级间距下一级模型上进行,一、二级模型在0.5D 级间距下均不宜采用“归零”修正方法。  相似文献   
849.
针对太阳探测器,提出一种基于太阳自转轴观测角的新型天文导航方法,通过光谱仪测量太阳圆盘面边缘上两组连线互相垂直点的速度差值,建立速度差值与太阳自转轴观测角的数学模型,并以该观测角作为量测量来提供探测器的位置信息。仿真结果表明:相较于传统以太阳视方向作为量测量的导航方法,以太阳自转轴观测角作为量测量的新型天文导航方法的导航精度提高了17.4%。此外,还分析了测速敏感器精度、滤波周期和轨道倾角对导航性能的影响,为深空探测自主导航提供了新的理论与方法。  相似文献   
850.
对旋风机前后级转速比对风机气动特性影响较大,合适的转速比有利于提高对旋风机气动性能。采用数值计算和实验模拟方法研究对旋风机前后两级叶轮转速改变对风机气动特性的影响。首先,通过速度三角形定量分析转速改变对风机功率和内部流动参数的影响。之后,数值计算的结果与实验进行对比,分析基准转速下风机整体性能的变化。最后,通过数值计算结果对风机内部气体的流动进行具体分析,发现在保持进口条件不变的条件下,前后两级叶轮转速改变相同百分比时,第1级转速改变可以更加有效的改变风机的流动参数和性能,综合比较整体性能变化与实际应用确定了最优转速比为1.1∶1,此转速比下传动效率为88.4%时对旋风机效率为75%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号