全文获取类型
收费全文 | 2118篇 |
免费 | 499篇 |
国内免费 | 204篇 |
专业分类
航空 | 2447篇 |
航天技术 | 131篇 |
综合类 | 118篇 |
航天 | 125篇 |
出版年
2024年 | 20篇 |
2023年 | 75篇 |
2022年 | 126篇 |
2021年 | 120篇 |
2020年 | 125篇 |
2019年 | 95篇 |
2018年 | 81篇 |
2017年 | 98篇 |
2016年 | 123篇 |
2015年 | 111篇 |
2014年 | 112篇 |
2013年 | 107篇 |
2012年 | 112篇 |
2011年 | 142篇 |
2010年 | 93篇 |
2009年 | 128篇 |
2008年 | 97篇 |
2007年 | 106篇 |
2006年 | 71篇 |
2005年 | 75篇 |
2004年 | 84篇 |
2003年 | 69篇 |
2002年 | 66篇 |
2001年 | 50篇 |
2000年 | 52篇 |
1999年 | 46篇 |
1998年 | 67篇 |
1997年 | 44篇 |
1996年 | 56篇 |
1995年 | 44篇 |
1994年 | 48篇 |
1993年 | 52篇 |
1992年 | 31篇 |
1991年 | 28篇 |
1990年 | 18篇 |
1989年 | 39篇 |
1988年 | 3篇 |
1987年 | 5篇 |
1986年 | 1篇 |
1984年 | 1篇 |
排序方式: 共有2821条查询结果,搜索用时 11 毫秒
361.
362.
363.
364.
针对航空发动机气膜阻尼的结构设计需求,基于挤压间隙流理论和能量方程建立气膜阻尼的力学模型,由此获得气膜阻尼结构的等效刚度系数和等效阻尼系数,通过振动方程的理论推导获得放大因子的表达式.结果表明:气腔厚度、气腔初始压强、吸振薄板模态频率和安装位置是影响减振效果的关键参数.气腔最优厚度主要由附面层厚度和实际振动频率决定,需结合实际情况确定气腔厚度,以最大程度降低振动响应;气腔初始压强越高,阻尼系数越大;吸振薄板的固有频率应尽可能与叶片本体接近,并且安装在本体振动响应最大位置,以取得最好的减振效果. 相似文献
365.
366.
367.
为了研究弯叶片弯角、端弯弯高和端弯弯角三个参数对扩压叶栅流道内的旋涡结构和气动性能所造成的影响大小和交互作用的主次顺序,以环形扩压叶栅为研究对象,通过正交试验设计的方法,对试验结果进行分析。结果表明,存在一个最佳弯叶片弯角以平衡集中脱落涡和壁角涡对叶栅出口总压损失分布的影响;弯叶片弯角的提高会导致壁角涡减弱并且涡核靠向端壁,集中脱落涡增强并且涡核靠向流道中部;旋涡结构的变化进而导致端部高损失区域损失减小并且靠向集中脱落涡涡核,流道中部损失增厚并且向中部收缩。端弯的弯高和弯角对角区的影响明显强于流道中部;壁角涡强度的提高导致端部损失的增加;集中脱落涡涡核向端壁移动,导致流道中部损失向端区扩散,但损失减小有限。 相似文献
368.
高亚声速压气机叶片优化设计 总被引:13,自引:4,他引:13
为实现压气机叶片的优化设计,采用Hicks Henne函数进行叶型参数化,N S方程流场计算与混合遗传算法结合构成设计软件。以给定叶片表面压力分布为目标,以损失小而扩压度大和给定压比损失最小作为目标,所得优化叶片吸力面等熵马赫数分布合理、符合控制扩散规律,具有较好的压比和损失指标。采用几何方法与椭圆型方程方法结合生成壁面正交H型网格,可提高计算精度和便于采用代数紊流模型的流场计算。 相似文献
369.
在低速风洞上,对某型弹用涡扇发动机涡轮低压导向器原型和改型进行了变工况条件下的详细流场测量。与原型低压导向器相比,改型低压导向器多种几何参数发生了改变,主要包括采用优化的子午型线、正弯叶片、后部加载叶型以及前缘负冲角设计等,因此二者的冲角特性有较大差异。实验分别对两种导向器叶栅测量了3种工况条件,分别为正冲角工况、设计工况和负冲角工况,并对结果进行了对比分析。实验结果显示:改型不仅在设计工况下能量损失较小,而且具有较好的攻角适应性,表现为在所测工况范围内叶栅出口总压损失随工况的变化幅度很小,而原型出口损失则对冲角敏感,损失变化幅度相对较大。 相似文献
370.
针对目前对鸟体撞击风扇部位影响分析不全的问题,计算了鸟体飞向叶片不同部位和穿过支板间隙的概率,在此基础上分析了鸟体撞击旋转状态第1级风扇叶片不同位置的概率。基于数值模拟技术,建立了鸟体撞击叶片的有限元模型,模拟鸟撞击风扇叶片叶尖、叶中、叶根部位,在分析引起叶片不同位置塑性变形的基础上,进一步确定了风扇损伤最大的位置。针对4种不同的鸟体撞击速度,对发动机第1级风扇叶片鸟体撞击部位损伤进行了分析。得到鸟体穿过叶尖部位支板间隙的概率约为50%,撞击叶尖部位概率约为16.7%,是最容易撞击的部位,受到的损伤也较大。计算结果可以为确定发动机风扇叶片鸟体撞击损伤提供参考。 相似文献