首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3876篇
  免费   524篇
  国内免费   330篇
航空   2886篇
航天技术   713篇
综合类   357篇
航天   774篇
  2024年   37篇
  2023年   114篇
  2022年   131篇
  2021年   164篇
  2020年   136篇
  2019年   151篇
  2018年   104篇
  2017年   129篇
  2016年   163篇
  2015年   174篇
  2014年   192篇
  2013年   166篇
  2012年   205篇
  2011年   234篇
  2010年   181篇
  2009年   186篇
  2008年   230篇
  2007年   189篇
  2006年   195篇
  2005年   150篇
  2004年   126篇
  2003年   149篇
  2002年   114篇
  2001年   138篇
  2000年   103篇
  1999年   92篇
  1998年   95篇
  1997年   98篇
  1996年   102篇
  1995年   70篇
  1994年   80篇
  1993年   70篇
  1992年   69篇
  1991年   36篇
  1990年   38篇
  1989年   60篇
  1988年   14篇
  1987年   9篇
  1986年   13篇
  1985年   6篇
  1984年   3篇
  1983年   5篇
  1982年   3篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
排序方式: 共有4730条查询结果,搜索用时 781 毫秒
581.
为了能够实现对齿面啮合性能的灵活控制,针对弧齿锥齿轮小轮提出一种齿面拓扑修形方法,即借助二阶曲面对齿面偏差拓扑的近似表达,将齿面拓扑修形分解为5个方向:螺旋角修正、压力角修正、齿长曲率修正、齿廓曲率修正及齿面挠率修正,通过改变5个方向的修形系数对小轮齿面拓扑结构进行自由控制。在此基础上,建立齿面偏差与机床加工参数之间的修正数学模型,通过构建敏感性矩阵并采用最小二乘法求解,反求出获得修形齿面的小轮加工参数,以便指导加工。以一对弧齿锥齿轮副为例进行修形啮合分析,仿真结果表明:选取齿长曲率修形系数为0.0001,齿廓曲率修形系数为0.0005,齿面挠率修形系数为0.0003,对齿面进行拓扑修形后传动误差幅值为-25.60″,接触迹线倾斜角度变为54.7°,相比原始结果啮合性能得到改善。滚检接触区与理论仿真结果一致,验证了修形方法的有效性。   相似文献   
582.
为了合理进行整体叶盘多失效模式可靠性分析和准确描述各影响参数的重要程度,将智能算法与双重响应面方法相结合提出可靠性灵敏度分析的智能双重响应面方法 (Intelligent Dual Response Surface Method,IDRSM)。首先,建立IDRSM的数学模型,给出基于IDRSM的可靠性灵敏度分析的流程。然后,考虑流场和温度场作用,基于IDRSM对整体叶盘径向变形和应力两种失效模式进行可靠性分析和灵敏度分析。可靠性分析显示:当许用径向变形、许用应力的均值和标准差分别取3.8mm和76μm,690MPa和14MPa时,叶盘综合可靠度为0.9926。灵敏度分析显示:整体叶盘综合失效概率的主要影响因素为流速和转速,占叶盘总失效的92%。通过蒙特卡洛法、响应面法、极值响应面法、智能响应面法等四种方法比较显示:IDRSM能在保证计算精度的前提下提高计算效率。实例分析表明该方法在多失效模式综合可靠性灵敏度分析中的可行性和有效性,也为结构多失效模式可靠性优化开辟了有效途径。  相似文献   
583.
采用基于火焰面的燃烧模型研究部分预混燃烧   总被引:2,自引:1,他引:1       下载免费PDF全文
考虑到火焰面模型的优点,采用基于RANS的稳态火焰面模型,稳态火焰面/反应进度变量模型和非稳态火焰面/反应进度变量模型对部分预混燃烧室进行了数值计算,并将这三种燃烧模型的计算结果和实验值进行对比研究。发现稳态和非稳态火焰面/反应进度变量模型均成功地预测到了部分预混燃烧中的三岔火焰结构和火焰抬举现象,分析了三岔火焰的形成机理及抬举高度。文中稳态火焰面模型计算部分预混燃烧完全失效,无法捕捉到火焰抬举现象,稳态火焰面/反应进度变量方法计算的火焰抬举高度仅仅为10,基于反应进度变量为水、二氧化碳、一氧化碳和氢气的质量分数之和的非稳态火焰面/反应进度变量方法计算的火焰抬举高度仅为20,和实验值之间的误差为42.8%,而基于反应进度变量为一氧化碳和二氧化碳质量分数之和的非稳态火焰面/反应进度变量方法计算的火焰抬举高度大致32,和实验测量值35非常接近,误差仅为8%。对燃烧热力学标量温度和组分的计算,可以发现非稳态火焰面/反应进度变量方法和实验结果吻合最好,其次是稳态火焰面/反应进度变量模型,最差的是稳态火焰面模型。  相似文献   
584.
对J型加筋壁板共胶接技术在实际应用中所存在的主要问题进行了研究,着重介绍了R区芯材精确填充、筋条外型模成型、框架式插销垂直定位、共胶接真空袋封装等关键技术的研究情况,并对相关技术的应用进行了深入分析。研究结果表明,在精确计算的基础上,设计制造专用成型模具可实现R区填充芯材的精确制备,有利于提高加筋壁板胶接质量;选用筋条外型模成型工艺,并设计采用框架式插销垂直定位装置,可有效解决J型筋的表面成型质量、筋条尺寸精度、位置精度等问题;使用已硫化橡胶作为维形挡条、制备合适的内型面软模、优化辅助材料铺放方法,可减少表面质量问题,降低架桥、破袋风险。在应用了上述一系列制造技术后,成功制造了满足使用要求的J型加筋壁板复材零件,并初步实现该类型零件的批量化生产。  相似文献   
585.
郑科  张伟 《宇航计测技术》2021,(2):68-73,78
远地点发动机的推力矢量参数是卫星总装时的重要参考依据,对其不确定度的评估一直采用测量不确定度指南(GUM)方法,存在输入量组合覆盖性不全的问题.简述了动态轴推力矢量测量的数学模型,概述了 GUM法的评估过程和结果,详述了蒙特卡洛法(MCM)的原理、适用性和具体评估过程,并将评估结果与GUM法的结果进行了比较.比较结果表...  相似文献   
586.
传统的设计与分析中,大型网状可展开天线的金属网都作为薄膜看待.当薄膜张紧在曲线边界上时,必然形成负高斯曲率曲面,即反枕效应,使天线反射面型面精度降低.为了减少反枕效应的影响,通常的方法是减小曲线边界所围区域的面积,例如增加径向肋天线肋的数量,或者增大张力索网天线的网格密度,这些措施都增加了天线的复杂程度,带来重量的增加...  相似文献   
587.
导弹在高空中作机动飞行时易出现内弹道异常现象,严重时可能导致飞行任务失败。为了了解横向过载对固体火箭发动机内弹道性能的影响,对飞行过载下发动机内弹道性能进行更好地预示,建立了一种非均匀燃面退移离散坐标求解方法。从简单的内孔燃烧管型装药到常用的复杂星孔药型,利用离散坐标求解方法模拟横向过载下推进剂的燃面退移,得出了不同过载下的燃面退移规律,计算了燃面面积的变化情况;同时,将不同微元处的面积和燃速相对应,预示了横向过载下发动机的内弹道特性。结果表明,横向过载导致推进剂燃烧发生偏心,燃烧室压强提高,绝热层提前暴露。100g横向过载下,燃烧室压强增加4%,压强峰值出现时间0.4 s,绝热层暴露时间增加1.6 s;星孔药型燃面的下降段数等于星角数N/2+1。分析了横向过载对燃面退移及发动机内弹特性的影响,对发动机设计具有指导意义。  相似文献   
588.
针对固体燃料超燃冲压发动机的应用背景、技术优势和发展需求,对制约固体燃料超燃冲压发动机进一步工程化应用所面临的主要关键基础技术进行系统梳理。通过对固体燃料超燃冲压发动机工作原理、点火和火焰稳定性、燃面退移速率模型、固体燃料种类、超燃冲压发动机试验台技术特点及固体燃料超燃冲压发动机工作性能的阐述,详细分析了固体燃料超燃冲压发动机技术研究的进展和难点,并对固体燃料超燃冲压发动机未来研究趋势进行了展望。研究认为,固体燃料在超声速流动下的细化燃烧反应机理还需要进行深入研究,需要建立更加完善的超声速细化燃烧模型;考虑不同的固体燃料,固体燃料配方不同,带来推力性能和燃烧效率也不一样,需要推动固体推进剂技术改良;发动机地面试验测量方式过于单一,需要发展先进的测量手段。  相似文献   
589.
星载天线反射面型面热变形影响因素分析   总被引:1,自引:1,他引:0  
星载天线在轨运行时受到周期性的温度变化影响,天线反射面会发生热变形,影响天线增益.热膨胀系数是描述结构热变形的重要参数,并且会随温度变化;在进行结构热变形分析时若将热膨胀系数视为常数会给仿真分析带来误差.文章以抛物面天线反射面为研究对象,考虑热膨胀系数随温度的变化,针对ULE玻璃和M55层合板材料的反射面,仿真分析反射...  相似文献   
590.
针对高收纳比轻型可展天线的工程需求,提出了一种口径为0.5 m、收纳尺寸为1.5 U(10 cm×10 cm×15 cm)、质量小于0.5 kg的X波段抛物面缠绕肋可展天线结构.抛物反射面由缠绕肋、金属反射网和网面边索3部分组成,其中缠绕肋既是反射面展开的驱动元件,又是金属反射网的固定边界.缠绕肋截面采用C型截面.对C...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号