首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1869篇
  免费   530篇
  国内免费   183篇
航空   1803篇
航天技术   195篇
综合类   274篇
航天   310篇
  2024年   12篇
  2023年   75篇
  2022年   80篇
  2021年   94篇
  2020年   123篇
  2019年   114篇
  2018年   76篇
  2017年   83篇
  2016年   105篇
  2015年   86篇
  2014年   123篇
  2013年   108篇
  2012年   99篇
  2011年   98篇
  2010年   97篇
  2009年   88篇
  2008年   115篇
  2007年   106篇
  2006年   78篇
  2005年   61篇
  2004年   70篇
  2003年   65篇
  2002年   65篇
  2001年   49篇
  2000年   53篇
  1999年   30篇
  1998年   33篇
  1997年   47篇
  1996年   39篇
  1995年   47篇
  1994年   24篇
  1993年   41篇
  1992年   39篇
  1991年   17篇
  1990年   33篇
  1989年   33篇
  1988年   12篇
  1987年   11篇
  1986年   12篇
  1985年   12篇
  1984年   5篇
  1983年   10篇
  1982年   4篇
  1981年   5篇
  1980年   5篇
排序方式: 共有2582条查询结果,搜索用时 328 毫秒
731.
采用热压烧结与高压凝固分别制备了不同压力下Al_2O_3/Al-10Si复合材料,研究了高压对Al_2O_3/Al-10Si复合材料的组织演变规律及力学性能的影响。结果表明,高压凝固Al_2O_3/Al-10Si复合材料由α相,β相和Al_2O_3强化相组成,其中α相呈胞状,在α相晶界处存在少量粒径约为0.1μm的颗粒状β相;对于不同压力下制备的复合材料性能研究发现,凝固压力增加,α相中Si的固溶度增加,显微硬度及拉伸强度也随之提高,显微硬度由热压烧结时的55.3 HV,增加到了5 GPa时的128.1 HV,提高了133%,拉伸强度由热压烧结时的126 MPa,增加到了5 GPa时的702 MPa,这是由于高压导致α相中Si固溶度增加,形成了固溶强化。  相似文献   
732.
为了掌握压气机与爆震室相互作用机理,实现压气机与爆震室稳定匹配工作,针对离心压气机与爆震室共同工作过程建立了数值计算模型,并采用脉冲爆震涡轮发动机原理性试验系统进行验证,在此基础上结合传统航空发动机中压气机特性分析方法,对反传作用下的压气机工作特性进行了计算分析。结果表明:反传压力波使压气机内出现了瞬间的气体倒流现象,并且会在进气转接段内形成压力波动,使压气机出口长时间处于非稳态工况;压气机与爆震室匹配工作时,压气机工作特性线朝喘振边界靠近,效率低于0.39,而同转速下,压气机单独工作时,其效率均在0.81以上。  相似文献   
733.
陆禹铭  徐倩楠  吴锋  张海 《推进技术》2020,41(9):1999-2010
为减小整个预旋系统的流动损失,首先对带预旋集气腔进气孔、预旋集气腔、预旋喷嘴的冷气预旋流路进行了分析,发现进气孔和集气腔会导致预旋喷嘴进口流场不均匀,相较于进口均匀条件,预旋喷嘴总压损失系数增大0.026。在此基础上提出了一种将预旋集气腔进气孔、预旋集气腔和预旋喷嘴融合设计的低损失融合式预旋喷嘴设计方案,分析表明:融合式预旋喷嘴能有效减小冷气在预旋系统内的流动损失,在设计工况总压损失系数减小0.032,并使冷气在预旋系统内流动更加均匀,提升了预旋系统的整体性能。  相似文献   
734.
航空发动机燃油雾化特性研究进展   总被引:1,自引:2,他引:1       下载免费PDF全文
严红  陈福振 《推进技术》2020,41(9):2038-2058
从实验、理论和数值模拟三个方面对航空发动机内的燃油雾化问题研究进展进行了综述。实验方面,通过雾化实验,可定性分析喷注参数及环境条件等因素对雾化效果的影响,测量技术是影响实验精度的关键;雾化理论对液膜形状及破碎特性的预测值与实验还存在一定误差,复杂气动条件下的雾化理论还较为缺乏;雾化数值模拟可以获得不同形式燃油雾化的某些典型变化过程,复杂多过程、多因素影响的雾化模拟还较难开展。总体上看,航空发动机燃油雾化机理还未能完全揭示。  相似文献   
735.
郑权  魏万里  翁春生  武郁文  孟豪龙 《推进技术》2020,41(12):2790-2797
为了深入研究液态燃料旋转爆轰波传播特性,以汽油为燃料,富氧空气为氧化剂,开展了液态燃料喷注压力对旋转爆轰波传播特性影响的实验研究。使用马尔文粒度仪对不同喷注压力下的雾化流场进行测量,结果表明在距离喷嘴出口各平面上的液滴粒径均满足正态分布;且随着喷注压力的增大,液滴雾化细度不断改善,在距离喷嘴出口60 mm处二次雾化基本完成。在汽油质量流率为96 g/s,当量比为1.3工况下,旋转爆轰波以单波模态传播,传播频率为2494 Hz,平均传播速度为1198 m/s。液态燃料的喷注压力对旋转爆轰波的传播特性具有较大的影响,当喷注压力为0.6 MPa时,由于液滴的雾化粒径较大,无法形成旋转爆轰波。随着喷注压力的增大,液滴雾化细度得到改善,旋转爆轰波可以成功起爆并稳定自持传播,传播速度和平均压力均逐渐增大,传播稳定性也得到改善。  相似文献   
736.
开展了跨声速涡轮平面叶栅吹风实验,采用纹影技术捕捉静叶尾缘的激波现象并测量了流道中总压和静压分布。基于CFX软件,采用与实验相同的边界条件对实验叶栅进行了数值模拟分析,获得了流场分布、激波损失分布、激波/尾迹和边界层干扰分布等。综合实验与数值模拟结果,分析了叶片表面静压分布特点、叶栅出口周向总压分布特点及叶栅能量损失系数与出口马赫数的关系,发现激波损失在气动损失中占有很大比重。为了削弱激波强度以降低激波损失,通过控制叶型,使压力面负荷向尾缘移动,由此使得叶栅总压恢复系数增大0.003 6,能量损失系数降低0.185 8,总体激波损失减弱。  相似文献   
737.
周向布局对高负荷串列叶栅性能的影响   总被引:1,自引:0,他引:1  
为研不同周向布局下串列叶栅各排性能变化的机理,按扩压因子大小分布设计了一系列串列叶栅,每组串列叶栅进行6种周向布局计算分析;而后对一组串列叶栅前后排叶片积叠轴分别进行了弯曲处理,研究沿展向非均匀周向布局对串列叶栅性能的影响。研究结果表明:周向布局可以改变叶栅通道扩张规律从而改变流场压力分布。随着周向偏距增大,前排负荷增加,后排负荷降低。增大周向偏距可减小串列叶栅前后排损失,T5算例中80%周向偏距方案相对原型损失减少51.3%。前排叶栅决定了串列叶栅可用攻角范围,并且随着周向偏距增大,串列叶栅的可用正攻角增加。随着周向偏距增大,后排叶片端区分离会减小。串列叶栅整体正弯减小14.5%的总压损失系数。采用单独前排反弯或者单独后排正弯分别减小了15.6%和55.2%的总压损失。   相似文献   
738.
采用经实验校核的CFD方法研究吸力面不同深度的凹坑对高负荷扩压叶栅气动性能的影响。为研究不同凹坑方案对于叶栅损失特性的影响,深度为0.2、0.3、0.4、0.5、0.6mm,深宽比为0.25的5种凹坑分别被布置在42%~60%轴向弦长处。不同深度凹坑对于减小损失的效果不同。结果表明:深度为0.2mm的凹坑能够使得叶栅出口总压损失降低10.8%。三维球状凹坑通过提高边界层内的湍动能水平,促进边界层转捩,消除了层流分离泡,改善了矩形叶栅的气动性能。  相似文献   
739.
基于密切原理的Bump进气道外压缩鼓包逆向设计   总被引:1,自引:0,他引:1  
基于密切乘波理论提出一种Bump进气道外压缩鼓包的设计方法,可根据制定的激波形状及其曲率中心分布来逆向求解外压缩鼓包型面。通过引入曲率中心分布这一变量,可以控制横截面激波形状并调节外压缩鼓包的三维外型及其表面横向压力分布,进而提高外压缩鼓包的附面层排移能力。同时,发展了一种Bump进气道的流量系数快速估算法,能够在设计初期以不超过2%的误差快速给出进气道的流量系数。结果表明:基于密切原理的外压缩鼓包设计有利于改进Bump进气道的流量捕获和附面层排移能力。算例中,较锥导鼓包模型,密切鼓包方法设计的Bump进气道流量系数提升4.03%,附面层排移能力提升2.12%。   相似文献   
740.
对竖直上升圆管内超临界压力航空煤油的不稳定流动开展了实验研究。考察了管内壁温度、质量流量、出口温度、进出口压差等参数随时间的振荡情况,阐述了不稳定流动的诱发原因和反馈机制,建立了不稳定流动临界热负荷的预测关系式。结果表明:不稳定流动工况中发现了管内壁温度和进出口压差的异常波动。边界层发展过程中传热恶化形成类气膜是不稳定流动的诱因,存在两种类型的反馈机制:一方面,类膜态沸腾和类核态沸腾交替引发恶化换热和强化换热,导致热力不稳定;另一方面,压力扰动出现声波,压缩波使类气膜厚度减小且传热改善,膨胀波使类气膜厚度增大且传热变差,导致声波不稳定。两种反馈机制的综合作用形成热声振荡现象。   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号