首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   336篇
  免费   81篇
  国内免费   65篇
航空   316篇
航天技术   40篇
综合类   65篇
航天   61篇
  2024年   3篇
  2023年   13篇
  2022年   20篇
  2021年   21篇
  2020年   20篇
  2019年   20篇
  2018年   16篇
  2017年   20篇
  2016年   15篇
  2015年   16篇
  2014年   11篇
  2013年   11篇
  2012年   16篇
  2011年   22篇
  2010年   15篇
  2009年   16篇
  2008年   25篇
  2007年   18篇
  2006年   15篇
  2005年   13篇
  2004年   11篇
  2003年   15篇
  2002年   13篇
  2001年   11篇
  2000年   14篇
  1999年   16篇
  1998年   6篇
  1997年   8篇
  1996年   12篇
  1995年   9篇
  1994年   4篇
  1993年   5篇
  1992年   11篇
  1991年   9篇
  1990年   3篇
  1989年   4篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
排序方式: 共有482条查询结果,搜索用时 15 毫秒
421.
微尺度聚合物熔体的非等温平板收缩流动数值仿真   总被引:1,自引:0,他引:1  
聚合物流体的收缩流动行为是微注射成型工艺过程中影响分子取向与结构的重要因素。本文采用基于有限元求解法的通用CFD软件Fidap,结合适当的边界条件,实现了微尺度条件下聚合物熔体的4:1非等温平板收缩流动的数值模拟,所用流体粘度模型为Carrcau方程,有限元单元为4节点四边形网格。结果表明,流体下游速度明显高于上游速度,速度梯度在收缩人口处明显增大,下游压力梯度大于上游压力梯度,且最大剪切速率出现在收缩人口拐点处。将仿真结果同相关文献的结果相比较发现,仿真所得聚合物流体在收缩流动过程的速度、压力及剪切速率分布规律与其在宏观尺度下的结果具有定性一致性,而温度分布则存在一定偏差。因此,宏观收缩流动仿真研究中的控制方程及本构方程仍适用于微尺度条件下流体的等温收缩流动仿真研究,对非等温微流体收缩流动行为的研究则要对能量方程做进一步修正。  相似文献   
422.
面向纤维增强复合材料低速冲击损伤的非线性混合模型   总被引:1,自引:0,他引:1  
基于连续介质损伤力学提出了一种纤维增强复合材料(Fiber reinforced polyrner/plastic,FRP)结构低速冲击损伤预测的渐进损伤模型,包含非线性剪应力应变关系和归一化的混合模式基体损伤演化,用来预测复合材料层合板低速冲击损伤。模型区分了纤维拉伸/压缩、纤维间拉伸/压缩4种层内损伤以及层间分层损伤;纤维间损伤起始由Puck失效准则预测,损伤演化由断裂面上的等效应变控制,失效判定时考虑了就位效应对强度的影响;模型中加入单元特征长度以消除计算结果对网格密度的依赖性。以[45_4/-45_8/45_4],[0_3/45/-45]_S和[45/-45/0_2/90/45/0_2/-45/45]_3三种铺层的复合材料层合板为例,预测了不同冲击能量下复合材料层合板的低速冲击损伤响应参数,试验结果证明了本文模型的有效性。  相似文献   
423.
在水平光滑圆管内,采用雷诺实验对质量分数为0~400×10-6的黄原胶水溶液的流动转捩特性进行了观测,并通过实验探究了不同质量分数的盐(NaCl)环境对黄原胶溶液减阻特性的影响,测量了(100~300)×10-6的黄原胶溶液在不同NaCl质量分数(0、250×10-6、500×10-6和1000×10-6)下的减阻率与...  相似文献   
424.
实验研究了剪切流驱动的液滴在固体表面上起始运动的受力机理.工作中使用一系列液体和固体表面来获得不同的液滴接触角,并在小型风洞中进行实验.实验中对液滴的启动气流速度进行了测量,并综合各种起始时刻的参数信息,建立了一个关于液滴接触线表面张力和剪切气流拖拽力平衡的数学模型,揭示了液滴脱落时刻的受力情况.所建立的模型更适合液滴1变形情况,但对于其它类似情况的剪切气流驱动液滴运动也能够进行合理的描述.  相似文献   
425.
建立了由对数应变描述的弹性大变形本构关系,利用该本构关系分析了弹性大变形简单剪切问题.对应张量的五种客观率,分别给出了基于变形率和对数应变的简单剪切问题应力响应.结果表明:Jaumann率对应的应力响应具有最显著的振荡现象;对应各种客观率,正应力均能保持较好的单调性,剪应力则存在不同程度的振荡趋势;张量的客观率不是导致...  相似文献   
426.
流场速度测量精度会影响飞行器气动性能的预测精度,常用的基于激光技术的非接触式速度测量方法已不能完全满足流场速度高精度测量需求,飞秒激光电子激发标记(Femtosecond Laser Electronic Excitation Tagging,FLEET)测速技术有望解决这一问题。利用钛蓝宝石飞秒激光器搭建了FLEET测速系统,分析了流场中的N2分子在飞秒激光激发下的电子荧光光谱;基于FLEET测速系统,在射流剪切装置上开展了剪切流场速度测量实验,通过调节高速通道的流量/压力获得了不同速度分布的流场,开展了不同流场速度(30~170 m/s)下的FLEET测速实验;研究了延迟时间对流场速度测量的影响。结果表明:随着延迟时间增加,荧光图像会由于等离子体的扩散而发生弥散;FLEET荧光信号衰减会使信噪比有所降低,但不同延迟时间下得到的流场速度分布形态基本一致;FLEET技术在有效荧光寿命范围内具有足够的准确性应用于剪切流场速度测量。  相似文献   
427.
通过数值计算的方法,对比绝热剪切带内裂纹扩展和预制II型疲劳裂纹扩展的动态性能参数。分析热塑失稳现象中裂纹的传播与绝热剪切带传播的关系。采用ABAQUS/CAE进行二维模型建立,预制疲劳裂纹和绝热剪切带,分析计算了材料在2种情况的应力应变时间曲线、II型动态应力强度时间历程以及裂纹扩展速度。计算结果表明,预制绝热剪切带与预制疲劳裂纹对于材料的破坏方式影响一致,即裂纹跟随绝热剪切带传播最终导致材料失效。  相似文献   
428.
针对T800/5228A复合材料体系,采用改性聚芳醚酮(PAEK)增韧膜进行层间韧化,设计T800/5228E材料体系。冷场发射扫描电镜显示,T800/5228E层间具有富5228A/富PAEK双连续相结构。张开(Ⅰ)型与剪切(Ⅱ)型韧性试验表明,相比于T800/522A,T800/5228E的GIC与GIIC数值分别提高了68.01%与30.97%,破坏断面显示"钉铆"效应,大量微裂纹以及富PAEK相塑性变形可能主导了上述增韧效果,而张开(Ⅰ)型相比于剪切(Ⅱ)型破坏模式更有利于提供富PAEK组分塑性变形空间则可能是GIC改善效果更佳的缘由。  相似文献   
429.
在干扰剪切流(Interacting Shear Flow,ISF)理论的基础上,提出ISF稳定性理论并把它用于改进高雷诺(Re)数流动计算方法。(1)高Re数内外绕流的RANS计算及工业标准PNS计算中,流动转捩的预测均基于经典边界层理论;然而转捩并非总是最早发生在边界层中,例如发生在壁面小突起、小凹坑、小窄缝等局部粘性/无粘强干扰区,这些强干扰区可能位于边界层内,但边界层理论并不适用于它们,又如转捩发生在分离点邻域强干扰区等。(2)ISF理论表明:高Re数内外绕流为一复杂ISF,转捩总是最早发生在该ISF的层流区中。(3)ISF稳定性理论表明:作者提出的干扰剪切扰动流(Interacting Shear Perturbed Flow,ISPF)方程组可以计算ISF层流中非湍流扰动运动演化并预测转捩;ISF方程组和ISPF方程组分别与PNS和抛物化稳定性方程(PSE)为同类方程组,PSE分析计算边界层稳定性的众多成功实践,说明用ISPF(即PSE)方程组计算ISF层流扰动流并预测转捩完全可行。(4)RANS和PNS方法经ISF稳定性理论改进后,在转捩前用ISF方程组(即PNS)计算ISF层流基本流,用ISPF方程组(即PSE)计算ISF层流扰动流并预测转捩位置;转捩后RANS方法计算RANS或RANS/LES,PNS方法计算干扰剪切湍流(ISTF)方程组即抛物化RANS(PRANS)方程组。改进后的两方法,理论合理正确,方程体系完备、自洽,ISF方程组只能用ISPF方程组相配对,因此是高Re数内外绕流计算的理想且可持续发展的两种方法。  相似文献   
430.
抛物化NS方程得到广泛应用,已经成为工业标准气动计算的基础。现有的八种抛物化NS方程有不同的名称,方程中粘性项的形式略有不同,其中的PNS和薄层(TL)NS方程应用最多。但是这些方程都具有类似的数学性质,例如,当流向方向上马赫数大于1时,他们都是抛物型方程,可以采用空间推进算法(SMA)进行求解。与采用时间推进算法求解的NS方程或雷诺平均(RA)NS方程相比,PNS-SMA计算降低了空间的维数,节省了大量的存储空间和CPU计算时间。PNS-SMA算法也获得了巨大的进展。但是,早期PNS研究在理论上是相当模糊的,高智在1990年提出的粘性/无粘干扰剪切流理论(ISF)弥补了这一不足。ISF理论概括了PNS方程所能描述的基本流动,提出了其流动的运动规律及数学定义式,所导出的ISF方程组也属于PNS方程的一种。为了不增加新的名称,我们将ISF方程组也称为高氏PNS理论和方程组。这一理论在NS方程和RANS方程的计算中均有重要的应用。例如,计算最优坐标系的选择以减少伪扩散,网格尺度选择及局部网格加密设计以捕捉高超声速流动中物体表面热流等的急剧变化,壁面压力边界条件的选择以及由高PNS导出的壁面判据来进行NS和RANS近壁数值解可信度评估。本文评述了一些初步的应用,进一步的应用和综合PNS-SMA,RANS-SMA以及PSE-SMA计算值得深入研究,这里PSE指抛物化稳定性方程。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号