首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   40篇
  国内免费   17篇
航空   86篇
航天技术   11篇
综合类   15篇
航天   33篇
  2024年   1篇
  2023年   3篇
  2022年   6篇
  2021年   3篇
  2020年   4篇
  2019年   8篇
  2018年   3篇
  2017年   12篇
  2016年   7篇
  2015年   4篇
  2014年   6篇
  2013年   13篇
  2012年   10篇
  2011年   6篇
  2010年   7篇
  2009年   5篇
  2008年   8篇
  2007年   2篇
  2006年   3篇
  2005年   7篇
  2004年   6篇
  2003年   5篇
  2001年   1篇
  2000年   1篇
  1999年   4篇
  1998年   2篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
排序方式: 共有145条查询结果,搜索用时 0 毫秒
141.
基于水平气液两相分层流的压力梯度、波状液层和气壁剪切应力实验数据,对两流体剪切应力进行不确定度计算,分析各不确定度分量对液壁和气液界面剪切应力结果的影响。由剪切应力可以直接计算分层流动量平衡方程的本构参数,对本构参数的关联作了合理的解释。气液界面剪切应力受液层高度和压力梯度的准确性影响较大,而液壁剪切应力却相反,和气液界面剪切应力最大程度相关。通过和实验数据对比发现,液壁摩擦因子无法像气壁摩擦因子那样可以用单相管流的指数型关系式来描述,而是应该结合气液界面摩擦因子建立一个基于两相各流体特征参数的有效关联式。  相似文献   
142.
通过对螺纹紧固件松弛曲线的分析和研究 ,提出其松弛的规律、应采取的措施 ,以消除或减弱航天产品重要部位螺纹连接的松弛隐患。  相似文献   
143.
研究了形变时效和淬火时效对含Nb和不含Nb的两种Cu—l5Ni-8SnSpinodal分解型合金的力学、性能、应力松弛性能和其他物理性能的影响。经56%形变,400℃时效30min能使这两种合金获得很高的强度和弹性模量;在200℃具有良好的抗应力松弛性能;加Nb的合金能改善250℃的抗应力松弛性能。淬火时效处理能获得适中的强度和极良好的延性;加Nb能加速Spinodal分解,提高时效初期的强度。淬火时效态的两种合金在250℃下均显示良好强度和弹性稳定性,十分适合作高温电连接器中的导电弹性元件。文中还对调幅组织的强化和Nb的作用进行了讨论。  相似文献   
144.
为解决当前翼型优化中广泛使用的冻结湍流黏性假设存在的固有缺陷和基于Spalart-Allmaras(S-A)全湍流伴随中湍流模型对气动力计算精度较差的问题,提出一套新的翼型优化方法,其耦合了全湍流连续伴随求解、剪切应力传递(SST)湍流模型封闭的雷诺平均Navier-Stokes(RANS)方程、自由变形参数化方法和动网格变形技术。基于所提方法,在气动力系数相较于S-A模型有更高捕捉精度的基础上,对NPL9615翼型以最大升阻比为优化目标,并与冻结湍流黏性假设方法对比。结果表明:所提方法将原有翼型的升阻比提高了16.39%,而冻结湍流黏性假设方法获得最终翼型的升阻比仅提高了原有翼型的9.84%,说明所提方法在最优外形的获取上要领先于冻结湍流黏性假设,并且当翼型周围的湍流动能显著提高时,其优势愈发扩大。  相似文献   
145.
基于压电驱动器激励振动的机械力学式除冰技术是一种重量小和能耗低的新型除冰技术,用于应对航空结冰威胁问题。其中机械振动引起的界面剪切应力和相应结构振动模态是该除冰技术研究中的两个重要方面。寻找合适的振动模态来产生足够的界面剪切应力以提高除冰效率是研究中的重要内容。薄板的振动模态通常用横向轴线和纵向轴线上的反节点数m和n来描述。本文目的是研究不同结构弯曲振动模态下除冰剪切应力的分布特征,从而为基于机械振动的结冰防护系统(Ice protection system, IPS)的详细设计建立目标振动模态的选择依据。通过理论分析和仿真计算,建立了界面剪切应力与结构振动模态参数之间的关系。采用“冰层-平板-压电陶瓷”的有限元分析模型(Finite element model, FEM),仿真计算了不同振动模态下的应力应变水平,并根据仿真和实验结果分析了除冰剪切力的分布特征。最终给出了基于弯曲振动模态参数m和n的特征来确定除冰模态的选择标准。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号