首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1186篇
  免费   358篇
  国内免费   111篇
航空   1296篇
航天技术   86篇
综合类   89篇
航天   184篇
  2024年   11篇
  2023年   54篇
  2022年   67篇
  2021年   76篇
  2020年   62篇
  2019年   53篇
  2018年   47篇
  2017年   60篇
  2016年   61篇
  2015年   58篇
  2014年   66篇
  2013年   69篇
  2012年   76篇
  2011年   81篇
  2010年   84篇
  2009年   79篇
  2008年   84篇
  2007年   71篇
  2006年   66篇
  2005年   70篇
  2004年   58篇
  2003年   37篇
  2002年   33篇
  2001年   29篇
  2000年   32篇
  1999年   32篇
  1998年   22篇
  1997年   15篇
  1996年   18篇
  1995年   15篇
  1994年   16篇
  1993年   11篇
  1992年   8篇
  1991年   10篇
  1990年   8篇
  1989年   9篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1984年   1篇
排序方式: 共有1655条查询结果,搜索用时 15 毫秒
451.
层板冷却结构强化换热机理   总被引:1,自引:7,他引:1  
应用简化的换热模型分析了影响层板冷却效果的因素,得出了燃气侧气膜冷却效率ηf,层板内部换热效率ηi和参数f是影响冷效的决定因素。为了研究层板强化换热机理,提高其内部换热效率ηi以优化层板传热设计,本文在相同的两侧换热条件和冷气密流下,对5种相同孔径、通道高度和开孔率,不同内部绕流形式的层板结构和1种双层壁结构进行了流固耦合传热计算,得到了其综合冷却效率。结果表明层板结构的综合冷却效率明显高于双层壁;冷气沿程吸热焓增带走了大部分从燃气侧进入层板的热,并且冷气与层板内表面的换热主要发生在出气板上,扰流柱的存在增加了换热面积,一定程度上增强了换热;合理设计绕流结构有利于改善层板的热均匀性。   相似文献   
452.
为进一步提高燃气轮机叶顶区域的气膜冷却效率,在叶顶模型结构上对4种叶顶冷却结构的流动和传热进行了数值模拟,结果显示带有盖板的水平喷流结构能够有效地提高叶顶区域的气膜冷却效率,对于圆孔,可以将气膜冷却效率提高至原来的2倍以上.通过流场的分析发现:水平喷流结构可以调整冷却工质的流动,使得冷却工质的贴壁性更好、分布更加均匀,进而提高气膜冷却效率.此外还研究了间隙宽度、盖板尾缘厚度、盖度和整流栅对水平喷流结构气膜冷却效率的影响.结果表明:增加盖度和减小间隙宽度可以提高气膜冷却效率,但是盖度和间隙宽度的选取受到了强度、工艺和冷却工质入口压力等因素的限制.水平盖板结构的冷却效果比倾斜盖板结构的好.整流栅足够长时可以调整流动、提高气膜冷却效率.   相似文献   
453.
不同横斜槽结构对气膜冷却效果影响的正交模拟   总被引:2,自引:2,他引:2       下载免费PDF全文
张玲  王冲 《推进技术》2016,37(5):922-929
通过FLUENT软件并采用Realizable k-ε紊流模型对三维定常不可压缩N-S方程进行求解,利用正交模拟的方法模拟了不同的槽宽、吹风比和槽深三个影响因素共同作用下的平板气膜冷却效果,最终选出最优的冷却方案。结果表明:开槽深度为1倍孔径,吹风比为2.0和开槽宽度为2倍孔径的开槽姊妹孔的冷却效果最佳,为最优冷却方案。槽宽对平板冷却效率的影响最大,槽深的影响较小,吹风比的影响最小;开槽深度为0.75倍孔径,吹风比为2.0和开槽宽度为4倍孔径的开槽姊妹孔的冷却效率最低为0.1974,比最优冷却方案低约173%;横斜槽的存在使反向漩涡对的强度受到了抑制,从而加强了冷却效果。  相似文献   
454.
王彦红  李素芬 《推进技术》2016,37(12):2377-2384
为了深入理解火箭发动机再生冷却过程中碳氢燃料的流动传热规律,采用RNG k-ε湍流模型结合增强壁面处理方法对非对称受热(上壁面外侧加热)方形冷却通道内超临界压力甲烷的对流换热进行了数值研究。重点考察了加热壁面内侧的传热恶化以及由传热恶化和固壁热传导共同作用引起的热流异常传递现象,拟合得到了传热恶化的临界热流密度和起始内壁温关系式、加热侧内壁面和侧壁面内侧平均热流密度的预测关系式。结果表明:当外壁热流密度和质量流速比值高于0.288 k J/kg时,近壁流体流动加速诱发了加热侧内壁面的传热恶化;同时,固体区域温度畸变导致加热侧内壁面热流密度减小,热流更多地向侧壁面内侧传导。运行压力越低,该现象越显著。  相似文献   
455.
贺卫东  党海燕 《航空动力学报》2015,30(10):2546-2552
为研究激波进入喷管内部对发动机喷管产生的力、热效应,对喷管与起飞平台基面之间的羽流场进行了大量的仿真计算,着重分析了不同导流型面、不同起飞偏角情况下,进入喷管内部激波对喷管产生的力、热综合效应,激波在喷管内部的分布形态,并给出了激波移出喷管的条件.结果表明:当激波进入喷管内部但不产生激波贴壁现象时,激波不会对喷管内壁产生附加的力、热冲击;当激波进入喷管内部且产生激波贴壁现象时,在激波贴壁区产生一定的附加力矩和附加热流.该结论对探测器结构布局的设计具有重要的指导作用.   相似文献   
456.
由于涡轮前温度的不断升高,叶片冷却结构的复杂化、复合化,为改善涡轮冷却叶片在愈发恶劣的工作环境下的抗振特性,建立了多个复合冷却方式涡轮叶片的3维有限元模型。通过对模型进行热-固耦合和振动特性分析,研究了气膜孔的大小、数目、位置、排列、角度对叶片固有频率的影响。结果表明:气膜孔数的增多会导致叶片固有频率的降低,最多降低8.0%;气膜孔的增大对其影响则是不稳定的;其角度和位置的影响可以忽略不计。  相似文献   
457.
涡轮叶片前缘气膜冷却换热实验   总被引:7,自引:1,他引:7  
针对某型涡轮叶片放大模型的前缘冷却结构气膜冷却效果开展了细致的实验研究,利用红外热像仪测量了叶片表面的温度场分布,分析了前缘的气膜孔倾角、吹风比、主流雷诺数等参数对绝热冷却效率和压力损失的影响.实验中前缘的3排气膜孔倾角变化范围是35°~90°,主流雷诺数变化范围是76112~142624,吹风比变化范围是0.44~2.64.结果表明:气膜孔倾角越小,前缘驻点附近的气膜覆盖效果越好;气膜孔倾角为45°的叶片压力损失系数最小,气膜孔倾角为75°的叶片压力损失系数最大;主流雷诺数增大,绝热冷却效率下降,压力损失系数增加;吹风比增大到1.32时,绝热冷却效率达到最大,吹风比再增大绝热冷却效率反而下降.   相似文献   
458.
基于综合设计的涡轴发动机热力循环方案研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为了对比研究不同热力循环参数的涡轴发动机方案,建立集总体性能设计、尺寸流路设计、部件初步气动设计和重量估算的总体/部件为一体的综合设计模型,利用部件效率/气动负荷耦合设计和涡轮冷气量计算模型,实现发动机总体/部件的耦合设计。结果表明:在现有的设计技术水平下,低压比方案、高涡轮进口总温方案以及低压比和高涡轮进口总温的组合方案各具优势;高热力参数方案的设计必须以技术的进步为前提;未来涡轴发动机的总体设计将会沿着高热力循环参数和低热力循环参数两种方向发展。  相似文献   
459.
风兜面积对气冷喷油杆性能影响的数值研究   总被引:3,自引:0,他引:3  
以某型涡扇发动机加力燃烧室气冷喷油杆为研究对象,在梯形截面的风兜下底和高度不变的情况下,通过改变上底长度得到一系列不同风兜面积的几何模型,综合考虑外流场对气冷喷油杆内部流动和换热特性的影响,对其在巡航状态下进行了流/热/固耦合三维数值模拟研究,获得了不同风兜面积对气冷喷油杆引气率、冷却空气喷口流量分布、壁面平均冷却效果、壁面最高温度的影响规律.结果表明:引气率随风兜面积增大线性增大;喷油嘴凸台周围冷却空气喷口的流量沿气冷喷油杆内冷却空气流向呈二次曲线规律变化,且随风兜面积增大分布趋于均匀;随风兜面积增大,喷油杆、隔热套壁面平均冷却效果线性增大,壁面最高温度降低;有效抑制内涵高温燃气倒灌进入隔热套是避免喷油杆局部高温的关键.   相似文献   
460.
何悟  郭志辉  赵学成  邵伏永  蒋雪辉  吴静 《推进技术》2017,38(12):2788-2796
为了研究致密发散小孔冷却环形折流燃烧室的设计方法,根据火焰筒头部无冷却时的流场形态及期望引导的流场形态,对头部壁面发散小孔进行了两种对比性设计。为对比两种方案的优劣,对设计后的燃烧室进行了数值模拟。结果表明通过增加发散小孔,调节内外环射流孔的气量分配,可成功诱导出期望的多涡流场,且方案2的发散小孔冷却效果更佳。证明通过调整内外环发散小孔开孔数量来调节射流孔的射流穿透深度,并结合甩油盘油雾诱导理想的主燃区流场形成是可行的;采用孔倾角为钝角的发散小孔可更好地保护热负荷压力大的前几排火焰筒壁面;通过在高温区增大孔阵疏密度,把高温区处的发散小孔孔径由原先的0.68mm减小至0.3~0.55mm,可实现在不改变冷气流量的前提下,增强换热,降低壁面温度。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号