首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   892篇
  免费   321篇
  国内免费   150篇
航空   1020篇
航天技术   86篇
综合类   198篇
航天   59篇
  2024年   9篇
  2023年   33篇
  2022年   61篇
  2021年   42篇
  2020年   50篇
  2019年   55篇
  2018年   56篇
  2017年   46篇
  2016年   55篇
  2015年   58篇
  2014年   63篇
  2013年   66篇
  2012年   48篇
  2011年   50篇
  2010年   40篇
  2009年   50篇
  2008年   35篇
  2007年   28篇
  2006年   22篇
  2005年   20篇
  2004年   23篇
  2003年   25篇
  2002年   23篇
  2001年   23篇
  2000年   36篇
  1999年   25篇
  1998年   31篇
  1997年   33篇
  1996年   46篇
  1995年   25篇
  1994年   24篇
  1993年   77篇
  1992年   29篇
  1991年   15篇
  1990年   17篇
  1989年   12篇
  1988年   6篇
  1987年   2篇
  1986年   3篇
  1985年   1篇
排序方式: 共有1363条查询结果,搜索用时 15 毫秒
141.
对跨声速离心压气机中进口导叶与叶轮的相互影响作用进行了数值模拟研究,研究模型包括三种几何间距模型及对同一间距几何模型使用了两种不同的转静子交界面位置设定。计算结果表明:转静子交界面位置的设定对于多排叶片混合平面法定常计算性能会产生较大影响,5%叶轮轴向长度的变化就可造成1%的效率、2%的压比差别;进口导叶与叶轮的叶排间距大小对离心压气机级气动性能影响很小,但间距较小时会造成流场内较大的压力波动。在近叶排间距时,导叶切割叶轮激波会在导叶压力面侧产生一个高损失区,并沿导叶表面向上游传播;该高损失区由激波压力波造成。此外,激波存在与否,影响到两排叶片流场的相互影响作用强度:激波使叶轮对导叶流场的影响几倍甚至十几倍大于导叶对叶轮流场的影响;激波的影响作用使导叶压力面、吸力面侧压力波动由不同的原因造成。最后,在近叶排间距时,初始进入叶轮通道内且靠近主叶片压力面的尾迹相对靠近吸力面的尾迹片会滞后;完全进入叶轮通道后,近压力面侧尾迹的滞后更显著。  相似文献   
142.
采用空间HUE格式、时间LU-SGS推进、sst-kw湍流模型、多块结构网格程序,对磁流体动力学(Magnetohydrodynamic:MHD)控制高超声速二维进气道边界层分离进行了数值研究.研究发现,不施加控制时,数值模拟得到的壁面静压和实验结果符合良好,进气道喉道处分离区占据喉道高度的1/3左右.通过施加MHD控制,消除了进气道内部的边界层分离,总压恢复系数从0.502提高到0.56,喉道处流场畸变系数减小了18.6%.  相似文献   
143.
旋转冲压压缩转子研究进展及发展前景   总被引:5,自引:1,他引:5  
钟兢军  韩吉昂  杨凌 《航空动力学报》2011,26(10):2293-2301
在基于激波压缩技术的旋转冲压压缩转子概念、原理和结构特点分析的基础上,综述了国内外在这一领域的研究进展,并对这种基于激波压缩技术的压缩系统研究过程中需要突破的技术难点和未来发展前景进行了分析及讨论.   相似文献   
144.
"回收/调节"方法在混合LES/RANS模拟方法中的应用   总被引:1,自引:2,他引:1  
采用一种混合大涡模拟/雷诺平均Navier-Stokes(LES/RANS)模拟方法结合三阶加权基本无振荡(WENO)格式对马赫数为2.88的压缩斜坡流动进行了数值模拟,并采用"回收/调节"方法生成入口湍流脉动边界条件.当采用固定入口边界条件时,湍流边界层会缺乏合理的湍流能量,使之抵抗逆压梯度的能力减弱,会严重高估分离...  相似文献   
145.
为研究连续旋转爆轰发动机(CRDE)内外流场的变化特性,采用氢气-空气单步有限速率化学反应模型,对内径为40 mm、外径为60 mm、长度为50 mm的连续旋转爆轰发动机进行三维数值模拟,获得了CRDE内外流场结构特征和旋转爆轰波相关参数的变化特性,分析了不同进气总压条件对流场结构和发动机性能的影响。结果表明:爆轰产物在燃烧室出口附近膨胀加速,压力和温度大幅降低,在流场下游产生激波使压力回升,且随进气总压的升高,激波距燃烧室出口距离增加;出口附近羽流中心形成低压高温区域,中心平面上的平均压力低于环境压力,给发动机推力带来了副作用;羽流外围的空气受出口处斜激波的扰动,压力呈现出周期性变化;发动机推力随进气总压的升高而呈线性增加,进气总压为0.55MPa时,发动机推力达到了1160 N。计算仿真结果对掌握连续旋转爆轰发动机外流场特性具有一定的参考价值。  相似文献   
146.
分析了冲压发动机喷油燃烧引起内流道内正激波运动的机理,采用一维激波捕捉方法,建立了燃油喷入对正激波运动位置影响的一维仿真模型。通过仿真发现:喷入燃油并逐步增大燃油-空气当量比时,正激波逐步向上游运动;燃油-空气当量比越大,正激波越接近进气道喉道;当燃油-空气当量比增大到一定程度时,正激波距离进气道喉道最近,但并未越过喉道;进一步增大燃油-空气当量比,正激波开始向下游回退进一步分析发现:冲压发动机流道及燃烧组织匹配设计直接影响到正激波在流道内的运动位置,需要在设计中格外重视。燃油-空气当量比与激波位置的关系分析可为冲压发动机设计提供一定的理论参考。  相似文献   
147.
<正>据NASA网2013年2月19日报道,卡西尼(Cassini)探测器在土星附近观测到一次强烈的太阳风,其中的粒子被加速到接近光速的水平,这种效应与粒子太阳系内部超新星激波加速机制相似,这种机制可能正是宇宙射线的来源。土星磁场周围形成的这种激波环境,构成一座研究超新星粒子加速机制的天然实验室,  相似文献   
148.
重构修正方法(correction procedure via reconstruction,CPR)具有紧致高效的优点,但对较强激波的捕捉能力还相对较弱,而加权紧致非线性格式(weighted compact nonlinear scheme,WCNS)具有很强的激波捕捉能力。将基于高阶WCNS插值的二阶格式引入到高阶CPR方法中,构造了一种高效高分辨率的混合激波捕捉格式。首先,基于非线性权偏离线性权的程度的激波侦测器侦测出问题单元,并在问题单元附近引入缓冲单元,其余单元则标记为光滑单元。然后,针对问题单元和缓冲单元采用二阶格式计算,光滑单元采用CPR方法计算,构造混合格式。通过对等熵涡问题、含激波的问题以及激波旋涡干扰问题的数值模拟,测试了混合格式的精度、激波捕捉能力和计算效率。数值模拟结果充分说明了该混合格式具有很强的激波捕捉能力,同时在光滑区具有高分辨特性,可以应用于高超声速流动问题的高效数值模拟中。相比于基于高阶WCNS插值的二阶格式,此格式具有更高的计算效率和更高的分辨率。  相似文献   
149.
针对椭圆内锥几何约束下激波的非均匀汇聚问题,利用高超声速等价原理,将三维定常椭圆内锥激波转化为二维非定常椭圆内收缩运动激波。根据激波动力学原理,发展出一种既能得到非定常激波面演变过程及参数分布,又能沿着激波面追踪扰动传播过程的“波面-扰动追踪法”。该方法不仅具有快速预测激波非均匀汇聚及其演变过程的特点,而且有助于揭示激波面从连续弯曲演变出间断的内在机理。研究表明:初始沿周向强度均匀,而几何形状偏离轴对称的椭圆内聚激波受到自身产生的非均匀“Shock-Compression”扰动,在向中心汇聚的过程中,激波强度非均匀性出现且不断加剧。由于长轴附近的激波面曲率大,激波强度增长得更快。而激波强度的非均匀性会导致扰动的聚集,使得原本连续光滑的激波面出现间断,进而将初始长、短轴附近的激波面分割为强、弱两对激波段。增大长短轴比,椭圆激波的非均匀性演化更快,激波面更早地出现间断。利用“波面-扰动追踪法”对椭圆激波汇聚过程进行分析,为解决三维定常内锥激波的非均匀汇聚问题提供了新的途径。  相似文献   
150.
基于气体放电辐射强度与气体密度的相关性,在高超声速脉冲风洞FD-20中搭建了气体放电流场显示系统,并分别以平板模型、平板-方块模型和简化进气道模型为试验模型,在来流马赫数Ma=12.16、来流静压p≈106Pa的流场条件下开展气体放电流场显示技术研究。在平板实验中,气体放电方法较准确地观测到了电极之间的平板前缘激波结构,与纹影技术测得激波角相差仅为0.21°。在平板-方块实验中,气体放电方法观测到了2个截面(对称面和远离对称面截面)的激波结构,对称面波系结构与纹影和数值计算所得结果基本一致,远离对称面截面的波系结构与数值计算结果基本一致。在简化进气道实验中,气体放电方法观测到了内流道激波交叉形成的菱形结构,且尺寸与数值计算结果相差较小,约为7.9%。这些实验结果表明,在高超声速脉冲风洞中,采用气体放电方法可以获得清晰准确的激波结构,不仅可进行分截面激波结构观测,还可对被模型遮挡的内部区域激波结构进行显示,而且特别适合用于局部复杂流动波系结构的观测。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号