全文获取类型
收费全文 | 1360篇 |
免费 | 300篇 |
国内免费 | 106篇 |
专业分类
航空 | 982篇 |
航天技术 | 449篇 |
综合类 | 73篇 |
航天 | 262篇 |
出版年
2024年 | 12篇 |
2023年 | 35篇 |
2022年 | 49篇 |
2021年 | 54篇 |
2020年 | 44篇 |
2019年 | 57篇 |
2018年 | 37篇 |
2017年 | 59篇 |
2016年 | 49篇 |
2015年 | 44篇 |
2014年 | 91篇 |
2013年 | 73篇 |
2012年 | 125篇 |
2011年 | 99篇 |
2010年 | 87篇 |
2009年 | 120篇 |
2008年 | 80篇 |
2007年 | 72篇 |
2006年 | 80篇 |
2005年 | 59篇 |
2004年 | 63篇 |
2003年 | 52篇 |
2002年 | 43篇 |
2001年 | 37篇 |
2000年 | 24篇 |
1999年 | 30篇 |
1998年 | 22篇 |
1997年 | 22篇 |
1996年 | 17篇 |
1995年 | 22篇 |
1994年 | 27篇 |
1993年 | 24篇 |
1992年 | 18篇 |
1991年 | 5篇 |
1990年 | 12篇 |
1989年 | 16篇 |
1988年 | 3篇 |
1987年 | 2篇 |
1986年 | 1篇 |
排序方式: 共有1766条查询结果,搜索用时 15 毫秒
11.
12.
13.
为探究径向槽对涡轮叶间补燃室的影响,设计了两种涡轮叶间补燃室模型.用计算流体动力学的方法对涡轮叶间补燃室内流动及燃烧进行数值模拟,数值模拟结果与实验数据基本吻合.涡轮叶间补燃室性能稳定,燃烧效率在97.5%以上,绝对压力损失为5.7%.叶背径向槽会引起气流在叶背发生分离,流场遭严重破坏,叶盆径向槽会减弱分离现象,改善出口径向平均速度分布.叶盆径向槽可提高燃烧效率,降低叶片表面温度,使叶间、出口温度更均匀.叶盆径向槽较叶背径向槽能降低CO、未燃碳氢化合物的排放量,但会引起NO排放量增加. 相似文献
14.
采用大涡模拟方法、结构化网格建立了低压高负荷透平Pak B叶栅的非稳态数值分析模型,研究了不同流动参数对合成射流控制叶栅流动分离的影响.控制前随着雷诺数的减小和气流攻角的增大,叶栅流动分离区域变大,在气流攻角为5°下发生分离未在尾缘前再附的情况.合成射流控制后,不同流动参数下的流动分离都得到了有效的控制,并且在射流偏角为30°时,合成射流控制效果最好.合成射流使叶栅吸力面的流动分离位置推迟,再附位置前移,分离泡尺寸减小,叶栅吸力面的逆压梯度段缩短,吸力面边界层表面的剪切层在向下游迁移的过程中,没有发生充分的抬升,避免了大尺度涡旋的形成,并且很快地黏附于壁面,进而有效地控制了流动分离. 相似文献
15.
16.
17.
对吸力面施加合成射流激励的高负荷压气机静叶栅展开数值模拟,系统地研究不同激励参数对单缝合成射流改善叶栅气动性能的影响,并探索分段式合成射流控制流动分离的有效性。研究结果表明,单缝合成射流对栅内流动的作用效果主要取决于两个因素:射流切向动量注入带来的气动性能改善与射流输运过程的附加流动损失。单缝合成射流具有较为宽广的有效频率范围,当激励频率等于主流流过叶型的频率且射流满足有效激励动量要求时,对叶栅气动性能的改善效果最佳,总压损失降低约14.26%。分段式合成射流能够较好地适应不同叶高处分离起始点沿轴向变化对最佳流动控制位置的要求,在不增加有效射流面积的前提下可较单缝射流更为有效地控制流动分离,此时的损失降低幅度高达15.84%,从另外一个角度证实了激励位置对于非定常激励的重要性。 相似文献
18.
提出了一种利用压力面与吸力面间压差产生射流旋涡的被动流动控制技术以改善压气机叶栅的气动性能,在进口马赫数Ma=0.67的高速扩压叶栅上验证了其有效性。结果表明,射流旋涡可有效增强吸力面附面层与主流间的能量交换,改变下游壁面涡的结构和尺寸,推迟流动分离,减小角区损失。当射流距分离线或端壁较近时,当地较厚的附面层使得旋涡上洗区的掺混损失增加;而射流距分离线或端壁过远时均会减弱下洗区能量注入对角区低能流体的影响;指向端壁的射流会增加壁面涡强度,而沿远离端壁方向过大的偏角则会减弱射流旋涡强度,从而减弱其控制效果。当射流轴向距叶片前缘xj/cx=40%、沿叶高距端壁h/H=15%、射流偏角β=60°时,其改善栅内流动的效果最佳,总压损失减小可达5.2%,而射流流量仅相当于主流的0.27‰。 相似文献
19.
消除数据调制影响的FFT捕获方法 总被引:1,自引:1,他引:1
在利用快速傅里叶变换(FFT, Fast Fourier Transform)捕获扩频信号的过程中,为了提高捕获精度,会遇到基带数据调制影响捕获性能的问题.主要分析了基带数据符号跳变影响FFT捕获性能的原因:在频域内造成待检测信号的幅度衰减以及频点偏移.提出了一种解决此问题的方法:通过对I和Q两路信号的运算,构造一个不受数据调制影响的复信号,对此信号作FFT,完成捕获.给出了此方法的MATLAB仿真,以及基于现场可编程门阵列(FPGA, Field Programmable Gate Array)的实现方案.实验数据表明,此方法消除了基带数据调制对FFT捕获性能的影响,且在相等积分时间的条件下,比常用方法的捕获精度提高了一倍. 相似文献
20.
为了研究组合抽吸对高负荷压气机叶栅内部分离流动控制的效果和机理,以内部同时存在有吸力面附面层分离和角区分离的压气机叶栅为研究对象,利用实验和数值模拟对3种不同的抽吸方案进行了探索。结果表明:附面层抽吸可以显著地改善叶栅性能和攻角特性; 在-5°~8°攻角范围内,吸附式叶栅的叶型损失系数得到了显著的降低,且抽吸量为0.76%时对应的损失系数降幅达到约67%;吸力面局部叶展抽吸方案(SS1)可以有效地消除抽吸叶展附近的分离,结果却导致角区分离面积变大;组合抽吸方案(CS)基本全部消除了叶栅内吸力面上的附面层分离和角区分离,因此全叶展上的负荷和扩压能力得到了显著的提升;不同攻角下损失系数随抽吸流量组合的变化规律不同,大攻角下吸力面上的抽吸控制更能有效地降低叶栅内的损失;进行组合抽吸时,需要针对不同的攻角选择最佳的抽吸流量组合。 相似文献