首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1516篇
  免费   167篇
  国内免费   209篇
航空   974篇
航天技术   555篇
综合类   137篇
航天   226篇
  2024年   6篇
  2023年   42篇
  2022年   20篇
  2021年   42篇
  2020年   68篇
  2019年   61篇
  2018年   54篇
  2017年   80篇
  2016年   52篇
  2015年   62篇
  2014年   116篇
  2013年   83篇
  2012年   110篇
  2011年   122篇
  2010年   67篇
  2009年   110篇
  2008年   108篇
  2007年   102篇
  2006年   72篇
  2005年   63篇
  2004年   27篇
  2003年   33篇
  2002年   21篇
  2001年   65篇
  2000年   32篇
  1999年   18篇
  1998年   33篇
  1997年   8篇
  1996年   30篇
  1995年   22篇
  1994年   95篇
  1993年   26篇
  1992年   11篇
  1991年   8篇
  1990年   11篇
  1989年   5篇
  1988年   1篇
  1984年   6篇
排序方式: 共有1892条查询结果,搜索用时 15 毫秒
1.
In this study we present an analytical formulation of synthetic-aperture radar (SAR) altimetry signals including narrow banded nonlinear wave fields and conditional statistics between wave elevation displacements, horizontal wave slopes and vertical wave particle velocities. Considering the wave elevation displacements coskewness with respect to horizontal slopes leads to an analytical formulation of the electromagnetic bias within a SAR-mode altimeter stack. This formulation can be either parametrized by the significant wave height (SWH) and mean wave steepness, or in terms of the variance of vertical wave velocities. The effect of conditional vertical wave particle velocity variances with respect to the observed horizontal wave slopes close to nadir incidence angles leads to an effective reduction of the azimuth blurring of SAR-mode stacks. We present here a formulation of this effect by examining JONSWAP ocean wave spectra. In most cases this effect reduces the azimuth blurring by 10% to 30%. Additionally we investigate the effect of a nonlinear wave elevation displacement probability density function (PDF) on estimated geophysical parameters. We were able to show that including an elevation displacement skewness of 0.13 improves significantly the SWH consistency between altimetry and ECMWF Reanalysis v5 ERA5 results.All of these effects are validated with respect to ERA5 model data in the North East Atlantic region and in situ data located in the German Bight and Baltic Sea.The developed model can be used in both SAR and conventional altimetry retrackers.  相似文献   
2.
A numerical procedure for the calculation of the transonic dip of airfoils in the time domain is presented. A viscous-inviscid aerodynamic interaction method is taken to calculate the unsteady aerodynamic loads. In the present case the integral boundary layer equations are coupled with the Transonic Small Disturbance (TSD) Potential Equation. The coupling between structural motion and aerodynamic loads is carried out using State Space equation. It is solved by State Transition Matrix technique. Results are presented for NACA 64A010 and NLR 7301 airfoils with structural data from Isogai and DLR, respectively. Comparisons show good agreement with other numerical results. Certain deviations of experimental data taken from literature need more insight in the detailed test conditions.  相似文献   
3.
The significance of external influences on the environment of Earth and its atmosphere has become evident during recent years. Especially, on time scales of several hundred years, the cosmogenic isotope concentration during the Wolf-, Spoerer-, Maunder- and Dalton-Minimum indicates an increased cosmic ray flux. Because these grand minima of solar activity coincide with cold periods, a correlation of the Earth climate with the cosmic ray intensities is plausible. Any quantitative study of the effects of energetic particles on the atmosphere and environment of the Earth must address their transport to Earth and their interactions with the Earth’s atmosphere including their filtering by the terrestrial magnetosphere. The first problem is one of the fundamental problems in modern cosmic ray astrophysics, and corresponding studies began in the 1960s based on Parker’s cosmic ray modulation theory taking into account diffusion, convection, adiabatic deceleration, and (later) the drift of energetic particles in the global heliospheric magnetic field. It is well established that all of these processes determining the modulation of cosmic rays are depending on parameters that are varying with the solar magnetic cycle. Therefore, the galactic cosmic ray intensities close to Earth is the result of a complex modulation of the interstellar galactic spectrum within the heliosphere. The modern view of this cosmic ray modulation is summarized in our contribution.  相似文献   
4.
Some of the most ‘active’ galaxies in the Universe are obscured by large quantities of dust and emit a substantial fraction of their bolometric luminosity in the infrared. Observations of these infrared luminous galaxies with the Infrared Space Observatory (ISO) have provided a relatively unabsorbed view to the sources fuelling this active emission. The improved sensitivity, spatial resolution and spectroscopic capability of ISO over its predecessor Infrared Astronomical Satellite (IRAS) of enabled significant advances in the understanding of the infrared properties of active galaxies. ISO surveyed a wide range of active galaxies which, in the context of this review, includes those powered by intense bursts of star formation as well as those containing a dominant active galactic nucleus (AGN). Mid-infrared imaging resolved for the first time the dust enshrouded nuclei in many nearby galaxies, while a new era in infrared spectroscopy was opened by probing a wealth of atomic, ionic and molecular lines as well as broad band features in the mid- and far-infrared. This was particularly useful, since it resulted in the understanding of the power production, excitation and fuelling mechanisms in the nuclei of active galaxies including the intriguing but so far elusive ultraluminous infrared galaxies. Detailed studies of various classes of AGN and quasars greatly improved our understanding of the unification scenario. Far-infrared imaging and photometry revealed the presence of a new very cold dust component in galaxies and furthered our knowledge of the far-infrared properties of faint starbursts, ULIGs and quasars. We summarise almost nine years of key results based on ISO data spanning the full range of luminosity and type of active galaxies.  相似文献   
5.
A large fraction of ISO observing time was used to study the late stages of stellar evolution. Many molecular and solid state features, including crystalline silicates and the rotational lines of water vapour, were detected for the first time in the spectra of (post-)Asymptotic Giant Branch (AGB) stars. Their analysis has greatly improved our knowledge of stellar atmospheres and circumstellar environments. A surprising number of objects, particularly young planetary nebulae with Wolf-Rayet (WR) central stars, were found to exhibit emission features in their ISO spectra that are characteristic of both oxygen-rich and carbon-rich dust species, while far-IR observations of the PDR around NGC 7027 led to the first detections of the rotational line spectra of CH and CH+. Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, The Netherlands, and the United Kingdom), and with the participation of ISAS and NASA.  相似文献   
6.
In this review the IR emission from circumstellar material is discussed, both of ionized gas and dust grains, and the astrophysical information that can be extracted from such observations. Some emphasis is placed on the possibilities of stellar IR astronomy using a large space-borne telescope, especially with respect to the much better spatial and spectral resolution of such a telescope compared to the current generation of ground-based and space IR telescopes.  相似文献   
7.
用数值方法模拟双锥,圆柱,椭球、圆锥和倒圆锥五类等质量异形铝粒子五种高宽比共25种粒子对半无限铝靶的超高速撞击侵蚀,撞击速度为4km/s,给出了坑深、坑径、坑形参数和坑体积随粒子形状及高宽比的变化曲线。结果与非圆球异形粒子超高速撞击侵蚀计算有重要参考价值。  相似文献   
8.
Although the elemental composition in all parts of the solar photosphere appears to be the same this is clearly not the case with the solar upper atmosphere (SUA). Spectroscopic studies show that in the corona elemental composition along solar equatorial regions is usually different from polar regions; composition in quiet Sun regions is often different from coronal hole and active region compositions and the transition region composition is frequently different from the coronal composition along the same line of sight. In the following two issues are discussed. The first involves abundance ratios between the high-FIP O and Ne and the low-FIP Mg and Fe that are important for meaningful comparisons between photospheric and SUA compositions and the second involves a review of composition and time variability of SUA plasmas at heights of 1.0≤h≤1.5R .  相似文献   
9.
The fastest pulsar and the slowest nova; the oldest galaxies and the youngest stars; the weirdest life forms and the commonest dwarfs; the highest energy particles and the lowest energy photons. These were some of the extremes of Astrophysics 2006. We attempt also to bring you updates on things of which there is currently only one (habitable planets, the Sun, and the Universe) and others of which there are always many, like meteors and molecules, black holes and binaries.  相似文献   
10.
Mercury’s unusually high mean density has always been attributed to special circumstances that occurred during the formation of the planet or shortly thereafter, and due to the planet’s close proximity to the Sun. The nature of these special circumstances is still being debated and several scenarios, all proposed more than 20 years ago, have been suggested. In all scenarios, the high mean density is the result of severe fractionation occurring between silicates and iron. It is the origin of this fractionation that is at the centre of the debate: is it due to differences in condensation temperature and/or in material characteristics (e.g. density, strength)? Is it because of mantle evaporation due to the close proximity to the Sun? Or is it due to the blasting off of the mantle during a giant impact? In this paper we investigate, in some detail, the fractionation induced by a giant impact on a proto-Mercury having roughly chondritic elemental abundances. We have extended the previous work on this hypothesis in two significant directions. First, we have considerably increased the resolution of the simulation of the collision itself. Second, we have addressed the fate of the ejecta following the impact by computing the expected reaccretion timescale and comparing it to the removal timescale from gravitational interactions with other planets (essentially Venus) and the Poynting–Robertson effect. To compute the latter, we have determined the expected size distribution of the condensates formed during the cooling of the expanding vapor cloud generated by the impact. We find that, even though some ejected material will be reaccreted, the removal of the mantle of proto-Mercury following a giant impact can indeed lead to the required long-term fractionation between silicates and iron and therefore account for the anomalously high mean density of the planet. Detailed coupled dynamical–chemical modeling of this formation mechanism should be carried out in such a way as to allow explicit testing of the giant impact hypothesis by forthcoming space missions (e.g. MESSENGER and BepiColombo).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号