首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   867篇
  免费   151篇
  国内免费   206篇
航空   572篇
航天技术   188篇
综合类   38篇
航天   426篇
  2024年   2篇
  2023年   55篇
  2022年   84篇
  2021年   103篇
  2020年   75篇
  2019年   65篇
  2018年   47篇
  2017年   10篇
  2016年   53篇
  2015年   45篇
  2014年   82篇
  2013年   101篇
  2012年   83篇
  2011年   99篇
  2010年   38篇
  2009年   52篇
  2008年   26篇
  2007年   55篇
  2006年   33篇
  2005年   9篇
  2004年   2篇
  2003年   4篇
  2002年   7篇
  2001年   36篇
  2000年   11篇
  1999年   20篇
  1991年   1篇
  1988年   2篇
  1987年   13篇
  1986年   11篇
排序方式: 共有1224条查询结果,搜索用时 46 毫秒
121.
SN 1006 is one of the supernova remnants (SNRs) with relatively low-temperature electrons, considering the young age of just 1000 years. We carried out SN 1006 mapping observations with the X-ray Imaging Spectrometers (XIS) and the Hard X-ray Detector (HXD) onboard Suzaku, the fifth Japanese X-ray satellite. Thanks to the excellent spectral resolution of XIS in the soft X-ray band, H-like and He-like oxygen emission lines were clearly detected, and we could make a map of the line intensity, and as well as a flux and the photon index of nonthermal component. We found that these parameters have spatial dependences from region to region in the SNR; the north region is bright in nonthermal, while dim in thermal; the east region is bright in both nonthermal and thermal; the inner region shows dim nonthermal and bright thermal emission. The photon index is the smallest in the north region.  相似文献   
122.
模线样板是检验零件几何尺寸和外形轮廓的量具,在航空制造中有着极其重要的作用.对于复杂的机加件,其空间曲面的展开和结构轮廓的提取一直是机加件模线样板设计过程中的一个技术难题.针对飞机复杂机加零件模线样板设计中的两类典型问题提出三种有效、实用的解决方法,即"边界拟合曲面法"、"分割生长提取法"和"草图线面相合法".  相似文献   
123.
Space manipulators are complex systems, composed by robotic arms accommodated on an orbiting platform. They can be used to perform a variety of tasks: launch of satellites, retrieval of spacecraft for inspection, maintenance and repair, movement of cargo and so on. All these missions require extreme precision. However, in order to respect the mass at launch requirements, manipulators arms are usually very light and flexible, and their motion involves significant structural vibrations, especially after a grasping maneuver. In order to fulfill the maneuvers of space robotic systems it is hence necessary to properly model the forces acting on the space robot, from the main terms, such as the orbital motion, to the second order perturbations, like the gravity gradient and the orbital perturbations; also flexible excitation of the links and of the joints can be of great importance in the manipulators dynamics. The case is furthermore complicated by the fact that the manipulator, together with its supporting spacecraft, is an unconstrained body. Therefore the motion of any of its parts affects the entire system configuration. The governing equations of the dynamics of such robotic systems are highly nonlinear and fully coupled. The present paper aims at designing and studying active damping strategies and relevant devices that could be used to reduce the structural vibrations of a space manipulator with flexible links during its on orbit operations. In particular an optimized adaptive vibration control via piezoelectric devices is proposed. The number of piezoelectric devices, their placement and operational mode should be correctly chosen in order to obtain maximum performance in terms of elastic oscillations reduction and power consumption. Even though an optimal placement cannot have a universal validity, since it depends on the type of maneuver and on the overall inertial and geometrical characteristics, an approach to solve the problem is proposed.  相似文献   
124.
Parameter analysis of PAF for whole-spacecraft vibration isolation   总被引:1,自引:0,他引:1  
Whole-spacecraft vibration isolation, which is implemented by modification of the existing PAF (payload attach fitting), is a direct and effective approach toward improving the dynamic environment that a spacecraft experiences during its journey to the orbit. In this paper, based on Craig–Bampton component modal synthesis and theory about modal effective mass, both the condensed model and the simplified model of the whole-spacecraft vibration isolation system are obtained. By these models, effects of the PAF's parameters, i.e. stiffness and damping, on the transmissibility from the bottom of the PAF to the bottom of the spacecraft and acceleration response of the bottom of the spacecraft are analyzed. Results show that merely increasing the damping of the PAF can effectively attenuate the peak transmissibility, decreasing the stiffness of the PAF can further improve the vibration isolation performance, and can avoid resonance with the launch vehicle by adding enough damping in the PAF. Furthermore, the natural frequency of first lateral or longitudinal mode and their peak transmissibility of the spacecraft-PAF structure can only be estimated by the modal effective mass and the residual mass rather than the rigid body mass of the spacecraft.  相似文献   
125.
首先从有限差分格式出发,给出了基本无振荡的高阶激波捕捉格式,然后,采用数值模拟方法对马赫数为6的2°攻角高超声速钝锥边界层的稳定性进行了研究。计算发现,由于攻角的存在,钝锥的稳定性特征与零攻角时有本质的差别,比如背风面的扰动比迎风面增长更快,但扰动增长最慢的地方并不是迎风面,而是侧面的某个位置;又比如背风面主要是长波起作用,迎风面和侧面主要是短波起作用;斜模式不稳定在整个钝锥边界层中起最主要作用。  相似文献   
126.
This paper presents a two-level geometric calibration method for the permanent magnet (PM) spherical actuator to improve its motion control accuracy. The proposed actuator is com- posed of a stator with circumferential coils and a rotor with multiple PM poles. Due to the assembly and fabrication errors, the real geometric parameters of the actuator will deviate from their design values. Hence, the identification of such errors is critical for the motion control tasks. A two-level geometric calibration approach is proposed to identify such errors. In the first level, the calibration model is formulated based on the differential form of the kinematic equation, which is to identify the geometric errors in the spherical joint. In the second level, the calibration model is formulated based on the differential form of torque formula, which is to calibrate the geometric parameters of the magnetization axes of PM poles and coils axes. To demonstrate the robustness and availability of the calibration algorithm, simulations are conducted. The results have shown that the proposed two-level calibration method can effectively compensate the geometric parameter errors and improve the positioning accuracy of the spherical actuator.  相似文献   
127.
The advantages of a constant volume combustion cycle as compared to constant pressure combustion in terms of thermodynamic efficiency has focused the search for advanced propulsion on detonation engines. Detonation of acetylene mixed with oxygen in various proportions is studied using mathematical modeling. Simplified kinetics of acetylene burning includes 11 reactions with 9 components. Deflagration to detonation transition (DDT) is obtained in a cylindrical tube with a section of obstacles modeling a Shchelkin spiral; the DDT takes place in this section for a wide range of initial mixture compositions. A modified ka-omega turbulence model is used to simulate flame acceleration in the Shchelkin spiral section of the system. The results of numerical simulations were compared with experiments, which had been performed in the same size detonation chamber and turbulent spiral ring section, and with theoretical data on the Chapman–Jouguet detonation parameters.  相似文献   
128.
Conceptual study of Mars Aeroflyby Sample Collection (MASC) is conducted as a part of the next Mars exploration mission currently entertained in Japan Aerospace Exploration Agency. In the mission scenario, an atmospheric entry vehicle is flown into the Martian atmosphere, collects the Martian dust particles as well as atmospheric gases during the guided hypersonic flight, exits the Martian atmosphere, and is inserted into a parking orbit from which a return system departs for the earth to deliver the dust and gas samples. In order to accomplish a controlled flight and a successful orbit insertion, aeroassist orbit transfer technologies are introduced into the guidance and control system. System analysis is conducted to assess the feasibility and to make a conceptual design, finding that the MASC system is feasible at the minimum system mass of 600 kg approximately. The aerogel, which is one of the candidates for the dust sample collector, is assessed by arcjet heating tests to examine its behavior when exposed to high-temperature gases, as well as by particle impingement tests to evaluate its dust capturing capability.  相似文献   
129.
The electric solar wind sail (E-sail) is a novel, efficient propellantless propulsion concept which utilises the natural solar wind for spacecraft propulsion with the help of long centrifugally stretched charged tethers. The E-sail requires auxiliary propulsion applied to the tips of the main tethers for creating the initial angular momentum and possibly for modifying the spinrate later during flight to counteract the orbital Coriolis effect and possibly for mission specific reasons. We introduce the possibility of implementing the required auxiliary propulsion by small photonic blades (small radiation pressure solar sails). The blades would be stretched centrifugally. We look into two concepts, one with and one without auxiliary tethers. The use of small photonic sails has the benefit of providing sufficient spin modification capability for any E-sail mission while keeping the technology fully propellantless. We conclude that small photonic sails appear to be a feasible and attractive solution to E-sail spinrate control.  相似文献   
130.
The RF SRC—Institute of Biomedical Problems, Russian Academy of Sciences, developed Biorisk hardware to study the effects of long-term exposure of dormant forms of various organisms to outer space and used it to complete a series of experiments on the Russian Module (RM) of the International Space Station (ISS).The experiments were performed using prokaryotes (Bacillus bacteria) and eukaryotes (Penicillium, Aspergillus, and Cladosporium fungi), as well as spores, dormant forms of higher plants, insects, lower crustaceans, and vertebrates. The biological samples were housed in two containers that were exposed to outer space for 13 or 18 months. The results of the 18-month experiment showed that, in spite of harsher temperature than in the first study, most specimens remained viable.These experiments provided evidence that not only bacterial and fungal spores but also dormant forms of organisms that reached higher levels of evolutionary development had the capability to survive a long-term exposure to outer space. This observation suggests that they can be transferred on outer walls of space platforms during interplanetary missions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号