首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   1篇
  国内免费   1篇
航空   23篇
航天技术   12篇
综合类   1篇
航天   9篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
  2015年   1篇
  2012年   1篇
  2011年   3篇
  2010年   2篇
  2009年   3篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1994年   2篇
  1992年   1篇
  1989年   1篇
  1985年   2篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1969年   1篇
  1968年   3篇
  1967年   1篇
排序方式: 共有45条查询结果,搜索用时 156 毫秒
41.
42.
A simulation study has been performed at GFZ Potsdam, which shows the anticipated improvement of the lunar gravity field model with respect to current (LP150Q model) or near-future (SELENE) knowledge in the framework of the planned German Lunar Explorations Orbiter (LEO) mission, based on PRARE-L (Precise Range And Range-rate Equipment – Lunar version) Satellite-to-Satellite (SST) and Satellite-Earth-Satellite (SEST) tracking observations. It is shown that the global mean error of the lunar gravity field can be reduced to less than 0.1 mGal at a spatial resolution of 50 km. In the spectral domain, this means a factor of 10 (long wavelengths) and some 100 (mid to short wavelengths) improvement as compared to predictions for SELENE or a factor of 1000 with respect to LP150Q. Furthermore, a higher spatial resolution of up to 28 km seems feasible and would correspond to a factor of 2–3 improvement of SELENE results. Moreover, PRARE-L is expected to derive the low-degree coefficients of the lunar gravity field with unprecedented accuracy. Considering long mission duration (at least 1 year is planned) this would allow for the first time a precise direct determination of the low-degree tidal Love numbers of the Moon and, in combination with high precision SEST, would provide an experimental basis to study relativistic effects such as the periselenium advance in the Earth–Moon system.  相似文献   
43.
44.
Wolf  R. A.  Spiro  R. W. 《Space Science Reviews》1997,80(1-2):199-216
Over the last 25 years, considerable scientific effort has been expended in the development of quantitative models of the dynamics of Earth's inner magnetosphere, particularly on studies of the injection of the storm-time ring current and of dynamic variations in the shape and size of the plasmasphere. Nearly all modeling studies of ring-current injection agree that time-varying magnetospheric convection can produce approximately the ion fluxes that are observed in the storm-time ring current, but the truth of that assumption has never been demonstrated conclusively. It is not clear that the actual variations of convection electric fields are strong enough to explain the observed flux increases in ~100 keV ions at the peak of the storm-time ring current. Observational comparisons are generally far from tight, primarily due to the paucity of ring-current measurements and to basic limitations of single-point observations. Also, most of the theoretical models combine state-of-the-art treatment of some aspects of the problem with highly simplified treatment of other aspects. Even the most sophisticated treatments of the sub-problems include substantial uncertainties, including the following: (i) There is still considerable theoretical and observational uncertainty about the dynamics of the large-scale electric fields in the inner magnetosphere; (ii) No one has ever calculated a force-balanced, time-dependent magnetic-field model consistent with injection of the storm-time ring current; (iii) The most obvious check on the overall realism of a ring-current injection model would be to compare its predicted Dst index against observations; however, theoretical calculations of that index usually employ the Dessler-Parker-Sckopke relation, which was derived from the assumption of a dipole magnetic field and cannot be applied reliably to conditions where the plasma pressure significantly distorts the field; (iv) Although loss rates by charge exchange and Coulomb scattering can be calculated with reasonable accuracy, it remains unclear whether wave-induced ion precipitation plays an important role in the decay of the ring current. However, considerable progress could be made in the next few years. Spacecraft that can provide images of large regions of the inner magnetosphere should eliminate much of the present ambiguity associated with single-point measurements. On the theoretical side, it will soon be possible to construct models that, for the first time, will solve a complete set of large-scale equations for the entire inner magnetosphere. The biggest uncertainty in the calculation of the size and shape of the plasmasphere lies in the dynamics and structure of the electric field. It is still not clear how important a role interchange instability plays in determining the shape of the plasmapause or in creating density fine structure.  相似文献   
45.
The second objective of GARP—climate research—comes more and more into the focus of the scientific community, and the use of satellites and spacelabs to acquire the necessary data is discussed widely. From an inspection of the results of current climate model computations it is attempted in this paper to deduce the criticality of atmospheric parameters with respect to climate and to deduce the required measuring accuracy to get useful data for further climate studies. It emerges that some quantities as the solar flux and albedo have to be determined to better than 1%, and that much improved global information about particles, clouds and gas distribution is necessary. The impact of these requirements on future satellite systems is discussed. One result is the need for comparative and calibrating spacelab missions as well as for adequate ground truth or in situ operations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号