首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   350篇
  免费   12篇
  国内免费   9篇
航空   177篇
航天技术   119篇
综合类   9篇
航天   66篇
  2021年   6篇
  2019年   5篇
  2018年   10篇
  2017年   5篇
  2016年   4篇
  2014年   16篇
  2013年   14篇
  2012年   17篇
  2011年   27篇
  2010年   19篇
  2009年   16篇
  2008年   17篇
  2007年   7篇
  2006年   7篇
  2005年   7篇
  2004年   5篇
  2003年   14篇
  2002年   19篇
  2001年   19篇
  2000年   6篇
  1999年   12篇
  1998年   3篇
  1997年   3篇
  1996年   4篇
  1995年   6篇
  1994年   5篇
  1993年   3篇
  1992年   4篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1985年   5篇
  1984年   6篇
  1983年   5篇
  1982年   5篇
  1981年   9篇
  1980年   2篇
  1979年   2篇
  1978年   5篇
  1977年   3篇
  1976年   3篇
  1975年   4篇
  1974年   3篇
  1973年   2篇
  1971年   3篇
  1970年   5篇
  1969年   4篇
  1968年   2篇
  1967年   3篇
  1965年   2篇
排序方式: 共有371条查询结果,搜索用时 31 毫秒
361.
简单控制规律下涡喷发动机特性的研究   总被引:2,自引:2,他引:2       下载免费PDF全文
研究了用于无人飞行器上使用的小推力级涡喷发动机在简单控制规律下的多种重要特性。通过计算横模拟方法,重点研究某型发动机的设计点性能装订方法、不同进口温度条件下发动机的稳定工作裕度以及发动机能够适应的飞行包线,并揭示了发动机的一些潜在的缺点。计算结果在发动机设计、生产和使用过程中有重要的指导意义。  相似文献   
362.
基于运动嵌套网格的前飞旋翼绕流N-S方程数值计算   总被引:6,自引:3,他引:6  
杨爱明  乔志德 《航空学报》2001,22(5):434-436
 通过求解 Navier-Stokes方程数值模拟了直升机旋翼前飞非定常流场。为了模拟包括旋转、周期性变距和周期性挥舞的非定常运动,采用了一种能够快速完成重叠网格间流场信息交换的运动嵌套网格方法。空间上采用中心平均的有限体积法进行离散,时间方向应用含隐式子迭代的双时间法推进求解。为了验证程序的正确性,数值计算了一有升力悬停流场,旋翼桨叶表面压力分布的计算值与实验值吻合很好。  相似文献   
363.
This paper presents results pertaining to the response of the mid-latitude ionosphere to strong geomagnetic storms that occurred from 31 March to 02 April 2001 and 07–09 September 2002. The results are based on (i) Global Positioning Systems (GPSs) derived total electron content (TEC) variations accompanying the storm, (ii) ionosonde measurements of the ionospheric electrodynamic response towards the storms and (iii) effect of storm induced travelling ionospheric disturbances (TIDs) on GPS derived TEC. Ionospheric data comprising of ionospheric TEC obtained from GPS measurements, ionograms, solar wind data obtained from Advanced Composition Explorer (ACE) and magnetic data from ground based magnetometers were used in this study. Storm induced features in vertical TEC (VTEC) have been obtained and compared with the mean VTEC of quiet days. The response of the mid-latitude ionosphere during the two storm periods examined may be characterised in terms of increased or decreased level of VTEC, wave-like structures in VTEC perturbation and sudden enhancement in hmF2 and h′F. The study reveals both positive and negative ionospheric storm effects on the ionosphere over South Africa during the two strong storm conditions. These ionospheric features have been mainly attributed to the travelling ionospheric disturbances (TIDs) as the driving mechanism for the irregularities causing the perturbations observed. TEC perturbations due to the irregularities encountered by the satellites were observed on satellites with pseudo random numbers (PRNs) 15, 17, 18 and 23 between 17:00 and 23:00 UT on 07 September 2002.  相似文献   
364.
The response of the ionospheric F-region in the equatorial and low latitude regions in the Brazilian sector during the super geomagnetic storm on 06–07 April 2000 has been studied in the present investigation. The geomagnetic storm reached a minimum Dst of −288 nT at 0100 UT on 07 April. In this paper, we present vertical total electron content (VTEC) and phase fluctuations (in TECU/min) from GPS observations obtained at Imperatriz (5.5°S, 47.5°W; IMPZ), Brasília (15.9°S, 47.9°W; BRAZ), Presidente Prudente (22.12°S, 51.4°W; UEPP), and Porto Alegre (30.1°S, 51.1°W; POAL) during the period 05–08 April. Also, several GPS-based TEC maps are presented from the global GPS network, showing widespread and drastic TEC changes during the different phases of the geomagnetic storm. In addition, ion density measurements on-board the satellite Defense Meteorological Satellite Program (DMSP) F15 orbiting at an altitude of 840 km and the first Republic of China satellite (ROCSAT-1) orbiting at an altitude of 600 km are presented. The observations indicate that one of the orbits of the DMSP satellite is fairly close to the 4 GPS stations and both the DMSP F15 ion-density plots and the phase fluctuations from GPS observations show no ionospheric irregularities in the Brazilian sector before 2358 UT on the night of 06–07 April 2000. During the fast decrease of Dst on 06 April, there is a prompt penetration of electric field of magnetospheric origin resulting in decrease of VTEC at IMPZ, an equatorial station and large increase in VTEC at POAL, a low latitude station. This resulted in strong phase fluctuations on the night of 06–07 April, up to POAL. During the daytime on 07 April during the recovery phase, the VTEC observations show positive ionospheric storm at all the GPS stations, from IMPZ to POAL, and the effect increasing from IMPZ to POAL. This is possibly linked to the equatorward directed meridional wind. During the daytime on 08 April (the recovery phase continues), the VTEC observations show very small negative ionospheric storm at IMPZ but the positive ionospheric storm effect is observed from BRAZ to POAL possibly linked to enhancement of the equatorial ionospheric anomaly.  相似文献   
365.
This investigation presents observations related to the generation of equatorial ionospheric irregularities (also known as equatorial spread F (ESF)) including ionospheric plasma bubbles and dynamic behavior of the ionospheric F-region in the South American sector during an intense geomagnetic storm in December 2006 (a period of low solar activity). In this work, ionospheric sounding observations and GPS data obtained between 13 and 16 December 2006 at several stations in the South American sector are presented. On the geomagnetically disturbed night of 14 and 15 December, ionospheric plasma bubbles were observed after an unusual uplifting of the F-region during pre-reversal enhancement (PRE) period. The unusual uplifting of the F-region during PRE was possibly associated with prompt penetration of electric field of magnetospheric origin. During the geomagnetic disturbance night of 14 and 15 December, strong oscillations due to the propagation of traveling ionospheric disturbances (TIDs) by the Joule heating in the auroral region were observed in the F-region at São José dos Campos (SJC, 23.2°S, 45.9°W; dip latitude 17.6°S), Brazil, and Port Stanley (PST, 51.6°S, 57.9°W; geom. latitude 41.6°S). The VTEC-GPS observations presented on the night of 14 and 15 December 2006 show both positive and negative storm phases in the South American sector, possibly due to changes in the large-scale wind circulation and changes in the O/N2 ratio in the southern hemisphere, respectively.  相似文献   
366.
The ionospheric sounding observations using the Canadian Advanced Digital Ionosondes (CADIs) operational at Palmas (PAL; 10.2°S, 48.2°W; dip latitude 6.6°S; a near-equatorial station), and São José dos Campos (SJC, 23.2°S, 45.9°W; dip latitude 17.6°S; a low-latitude station located under the southern crest of the equatorial ionospheric anomaly), Brazil, are analyzed during the different seasons viz., winter (June and July 2003), spring (September and October 2003), summer (December 2003 and January 2004), and fall (March and April 2004). The period used has medium solar activity (sunspot number between 77.4 and 39.3). The seasonal mean variations (using only geomagnetically quiet days) of the ionospheric parameters foF2 (critical frequency of the F-region), hpF2 (virtual height at 0.834 foF2; considered to be close to hmF2 (peak height of the F-region)), and h’F (minimum virtual height of the F-region) are calculated and compared between PAL and SJC. The prominent differences between PAL and SJC are as follows: h’F variations show strong post-sunset enhancement at PAL during the seasons of spring, summer, and fall; hpF2 variations show pre-sunrise uplifting of the F-layer at both stations during all the seasons and the hpF2 values during the daytime are lower at SJC compared with PAL during all the seasons; the foF2 variations show mid-day bite-out at PAL during all the seasons and SJC shows strong equatorial ionospheric anomaly during summer and fall seasons. Also, the seasonal variations of the ionospheric parameters foF2 and hpF2 (with ±1 standard deviation) observed at PAL and SJC are compared with the IRI-2007 model results of foF2 and hmF2. In addition, variations of the foF2 and hpF2 observed at SJC are compared with the IRI-2001 model results of foF2 and hmF2. It should be pointed out that the ionospheric parameter hpF2 is much easier to obtain using computer program developed at UNIVAP compared with hmF2 (using POLAN program). During the daytime due to underlying ionization hpF2 estimated is higher (approximately 50 km) than the true peak height hmF2. During the nighttime hpF2 is fairly close to hmF2. The comparison between the foF2 variations observed at PAL and SJC with the IRI-2007 model results shows a fairly good agreement during all the seasons. However, the comparison between the hpF2 variations observed at PAL and SJC with the hmF2 variations with the IRI-2007 model results shows: (1) a fairly good agreement during the nighttime in all the seasons; (2) the model results do not show the pre-sunrise uplifting of the F-layer at PAL and SJC in any season; (3) the model results do not show the post-sunset uplifting of the F-layer at PAL; (4) considering that, in general, hpF2 is higher than hmF2 during the daytime by about 50 km, the model results are in good agreement at PAL and SJC during all the seasons except summer at SJC, when large discrepancies in the observed hpF2 and modeled hmF2 are observed. Also, it has been observed that, in general, hmF2 values for SJC calculated using IRI-2001 are higher than IRI-2007 during the daytime in winter, summer, and fall. However, hmF2 values for SJC calculated using IRI-2001, are lower than IRI-2007 during the nighttime in spring.  相似文献   
367.
368.
369.
370.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号