首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   350篇
  免费   12篇
  国内免费   9篇
航空   177篇
航天技术   119篇
综合类   9篇
航天   66篇
  2021年   6篇
  2019年   5篇
  2018年   10篇
  2017年   5篇
  2016年   4篇
  2014年   16篇
  2013年   14篇
  2012年   17篇
  2011年   27篇
  2010年   19篇
  2009年   16篇
  2008年   17篇
  2007年   7篇
  2006年   7篇
  2005年   7篇
  2004年   5篇
  2003年   14篇
  2002年   19篇
  2001年   19篇
  2000年   6篇
  1999年   12篇
  1998年   3篇
  1997年   3篇
  1996年   4篇
  1995年   6篇
  1994年   5篇
  1993年   3篇
  1992年   4篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1985年   5篇
  1984年   6篇
  1983年   5篇
  1982年   5篇
  1981年   9篇
  1980年   2篇
  1979年   2篇
  1978年   5篇
  1977年   3篇
  1976年   3篇
  1975年   4篇
  1974年   3篇
  1973年   2篇
  1971年   3篇
  1970年   5篇
  1969年   4篇
  1968年   2篇
  1967年   3篇
  1965年   2篇
排序方式: 共有371条查询结果,搜索用时 296 毫秒
301.
多块网格网络并行计算中的负载分配研究   总被引:2,自引:0,他引:2  
针对CFD中多块网格计算的特点,并使用MPI网络并行系统,对某战斗机绕流进行了基于三维Euler方程的并行计算,主要研究了多块网格并行计算中负载的分配方法,发展了负载自动分配和网格自动重分区程序,计算结果表明:并行计算结果和实验结果完全吻合,8个节点机的并行效率达到了89%。  相似文献   
302.
袁宁  刘振德  于守志 《推进技术》2002,23(1):24-26,32
采用半经验的方法,对某S型进气道的模型试验数据进行了回归,建立了弹用涡喷(扇)发动机常用S型高亚声速进气道总压恢复系数与习行马赫数Ma,流量系数ψ,攻角α和侧滑角β的相关函数关系。该关经验公式可用于发动机稳态和启动加速过程一元数值仿真模型,从而提高一元发动机性能数值仿真计算的准确性。  相似文献   
303.
利用火箭喷管从亚声速、跨声速到超声速的非对称流动数学模型建立了计算喷管推力偏心的理论模型,并采用高精度有限体积TVD格式求解数值方程,可以对火箭发动机喷管的推力偏心特性进行评估与设计,并集成为Nvc软件。该软件完成了从喷管网格生成、数值计算到推力偏心分析全过程,界面友好,使用方便,大大提高了设计效率,通过大量的计算与试验结果的比较,计算结果可以满足工需要,减少试验次数,节约成本,具有广泛的用途。  相似文献   
304.
基于共轭方程法的跨音速机翼气动力优化设计   总被引:6,自引:5,他引:6  
 设计状态的机翼气动力特性是设计人员最为关心的指标, 应用控制理论设计方法进行了有升力约束情形下跨音速机翼阻力优化设计研究, 根据给定的目标函数推导了相应的共轭方程和边界条件, 研究了共轭方程的数值求解方法, 以及计算目标函数对设计变量的敏感性导数时所涉及的度量矩阵变分求解问题, 研究了流场计算、共轭方程数值求解、敏感性导数求解和拟牛顿优化算法这几个主要方面的有效结合问题, 发展出了一种跨音速机翼气动力优化设计方法, 进行了跨音速机翼气动力优化设计研究验证, 优化后机翼气动力特性有一定程度的改善, 阻力系数能减少20%左右, 而升力系数有所增大, 说明所发展的设计方法是成功的, 该设计方法在跨音速及复杂外形气动设计方面比以往设计方法具有更好的适用性和优越性。  相似文献   
305.
LISA Pathfinder is a technology demonstrator space mission, aimed at testing key technologies for detecting gravitational waves in space. The mission is the precursor of LISA, the first space gravitational waves observatory, whose launch is scheduled for 2034. The LISA Pathfinder scientific payload includes two gravitational reference sensors (GRSs), each one containing a test mass (TM), which is the sensing body of the experiment. A mission critical task is to set each TM into a pure geodesic motion, i.e. guaranteeing an extremely low acceleration noise in the sub-Hertz frequency bandwidth. The grabbing positioning and release mechanism (GPRM), responsible for the injection of the TM into a geodesic trajectory, was widely tested on ground, with the limitations imposed by the 1-g environment. The experiments showed that the mechanism, working in its nominal conditions, is capable of releasing the TM into free-fall fulfilling the very strict constraint imposed on the TM residual velocity, in order to allow its capture on behalf of the electrostatic actuation.However, the first in-flight releases produced unexpected residual velocity components, for both the TMs. Moreover, all the residual velocity components were greater than maximum value set by the requirements. The main suspect is that unexpected contacts took place between the TM and the surroundings bodies. As a consequence, ad hoc manual release procedures had to be adopted for the few following injections performed during the nominal mission. These procedures still resulted in non compliant TM states which were captured only after impacts. However, such procedures seem not practicable for LISA, both for the limited repeatability of the system and for the unmanageable time lag of the telemetry/telecommand signals (about 4400 s). For this reason, at the end of the mission, the GPRM was deeply tested in-flight, performing a large number of releases, according to different strategies. The tests were carried out in order to understand the unexpected dynamics and limit its effects on the final injection. Some risk mitigation maneuvers have been tested aimed at minimizing the vibration of the system at the release and improving the alignment between the mechanism and the TM. However, no overall optimal release strategy to be implemented in LISA could be found, because the two GPRMs behaved differently.  相似文献   
306.
In cooperation with Russia, the Brazilian deep space mission ASTER plans to send a small spacecraft to investigate the triple asteroid 2001-SN263. The nearest launch opportunities for this project include June 2022 and June 2025. One main exploration campaign is being planned with focus on the largest asteroid (Alpha). Among the instruments under development, a laser altimeter (named ALR) was preliminarily designed and presented in 2010–2011. Many studies to define mission and instruments requirements were performed aiming at the characterization of important issues for the successful realization of the mission. Among them, the identification of a suitable trajectory that could be followed by the ASTER spacecraft in the encounter phase, when the main campaign will take place. This paper describes the effort undertaken with focus on the laser altimeter operation. Possible encounter trajectories were modelled and simulated to identify suitable approach parameters and conditions allowing the accomplishment of the intended investigation. The simulation also involves the instrument operation, considering approach geometry, attitude, relative motion, time/date, and the dynamics of the main asteroid. From the laser altimeter point of view, keeping in mind the desired coverage results (50% minimum surface coverage of asteroid Alpha, complying with horizontal and vertical resolution requirements), results point out crucial features for the encounter trajectory, like the need for a small inclination (10-6 degrees; with respect to the asteroid's orbit), the most favourable spacecraft positioning (between the Sun and the asteroid) and pointing condition (back to the Sun), the minimum amount of achievable surface coverage (58%, focused on central areas), and the most proper time to conduct the main campaign (January 2025). Concerning the instrument, results offer refined values for divergence angle (500 to 650 μrad, half-cone), pulse repetition frequencies (from 1/20 to 1 Hz), and consequent data generation rates. A simulation tool that can use any 3D generated trajectories as input data was created for the analyses presented here. Although created for the ALR in this mission, this simple analysis tool can be adapted to other instruments in this or other missions.  相似文献   
307.
This study presents the first prediction results of a neural network model for the vertical total electron content of the topside ionosphere based on Swarm-A measurements. The model was trained on 5 years of Swarm-A data over the Euro-African sector spanning the period 1 January 2014 to 31 December 2018. The Swarm-A data was combined with solar and geomagnetic indices to train the NN model. The Swarm-A data of 1 January to 30 September 2019 was used to test the performance of the neural network. The data was divided into two main categories: most quiet and most disturbed days of each month. Each category was subdivided into two sub-categories according to the Swarm-A trajectory i.e. whether it was ascending or descending in order to accommodate the change in local time when the satellite traverses the poles. Four pairs of neural network models were implemented, the first of each pair having one hidden layer, and the second of each pair having two hidden layers, for the following cases: 1) quiet day-ascending, 2) quiet day-descending, 3) disturbed day-ascending, and 4) disturbed day-descending. The topside vertical total electron content predicted by the neural network models compared well with the measurements by Swarm-A. The model that performed best was the one hidden layer model in the case of quiet days for descending trajectories, with RMSE = 1.20 TECU, R = 0.76. The worst performance occurred during the disturbed descending trajectories where the one hidden layer model had the worst RMSE = 2.12 TECU, (R = 0.54), and the two hidden layer model had the worst correlation coefficient R = 0.47 (RMSE = 1.57).In all cases, the neural network models performed better than the IRI2016 model in predicting the topside total electron content. The NN models presented here is the first such attempt at comparing NN models for the topside VTEC based on Swarm-A measurements.  相似文献   
308.
Thermospheric wind measurements obtained from linear non-gravitational accelerations of the Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite show discrepancies when compared to ground-based measurements. In this paper the cross-wind is derived from both the linear and the angular accelerations using a newly developed iterative algorithm. The two resulting data sets are compared to test the validity of wind derived from angular accelerations and quantify the uncertainty in accelerometer-derived wind data. In general the difference is found to be less than 50?m/s vertically after high-pass filtering, and 100?m/s horizontally. A sensitivity analysis reveals that continuous thrusting is a major source of uncertainty in the torque-derived wind, as are the magnetic properties of the satellite. The energy accommodation coefficient is identified as a particularly promising parameter for improving the consistency of thermospheric cross-wind data sets in the future. The algorithm may be applied to obtain density and cross-wind from other satellite missions that lack accelerometer data, provided the attitude and orbit are known with sufficient accuracy.  相似文献   
309.
Both sensors of the SEIS instrument (VBBs and SPs) are mounted on the mechanical leveling system (LVL), which has to ensure a level placement on the Martian ground under currently unknown local conditions, and provide the mechanical coupling of the seismometers to the ground. We developed a simplified analytical model of the LVL structure in order to reproduce its mechanical behavior by predicting its resonances and transfer function. This model is implemented numerically and allows to estimate the effects of the LVL on the data recorded by the VBBs and SPs on Mars. The model is validated through comparison with the horizontal resonances (between 35 and 50 Hz) observed in laboratory measurements. These modes prove to be highly dependent of the ground horizontal stiffness and torque. For this reason, an inversion study is performed and the results are compared with some experimental measurements of the LVL feet’s penetration in a martian regolith analog. This comparison shows that the analytical model can be used to estimate the elastic ground properties of the InSight landing site. Another application consists in modeling the 6 sensors on the LVL at their real positions, also considering their sensitivity axes, to study the performances of the global SEIS instrument in translation and rotation. It is found that the high frequency ground rotation can be measured by SEIS and, when compared to the ground acceleration, can provide ways to estimate the phase velocity of the seismic surface waves at shallow depths. Finally, synthetic data from the active seismic experiment made during the HP3 penetration and SEIS rotation noise are compared and used for an inversion of the Rayleigh phase velocity. This confirms the perspectives for rotational seismology with SEIS which will be developed with the SEIS data acquired during the commissioning phase after landing.  相似文献   
310.
The organic compounds on the Martian surface are still undetectable by the previous Viking mission that has been sent to Mars even though they are expected to be there by exogenous and/or endogenous synthesis. The high abiotic reactivity has been the most acceptable explanation for the apparently absence of organic matter in the regolith.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号