首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3505篇
  免费   28篇
  国内免费   17篇
航空   1574篇
航天技术   1019篇
综合类   13篇
航天   944篇
  2022年   13篇
  2021年   30篇
  2019年   25篇
  2018年   192篇
  2017年   164篇
  2016年   84篇
  2015年   38篇
  2014年   87篇
  2013年   105篇
  2012年   109篇
  2011年   241篇
  2010年   195篇
  2009年   251篇
  2008年   231篇
  2007年   194篇
  2006年   69篇
  2005年   121篇
  2004年   96篇
  2003年   87篇
  2002年   60篇
  2001年   83篇
  2000年   39篇
  1999年   48篇
  1998年   60篇
  1997年   51篇
  1996年   44篇
  1995年   63篇
  1994年   37篇
  1993年   42篇
  1992年   59篇
  1991年   15篇
  1990年   19篇
  1989年   47篇
  1988年   23篇
  1987年   20篇
  1986年   15篇
  1985年   67篇
  1984年   62篇
  1983年   49篇
  1982年   48篇
  1981年   66篇
  1980年   36篇
  1979年   17篇
  1978年   18篇
  1977年   10篇
  1976年   16篇
  1975年   15篇
  1974年   12篇
  1971年   11篇
  1969年   9篇
排序方式: 共有3550条查询结果,搜索用时 437 毫秒
951.
A general expression of the output SNR of a photodetector is derived for a noise-like laser amplitude-modulated by a stationary Gaussian random modulating signal in the presence of a background light. The electric field Vx(t) of the noise-like laser is assumed to be a stationary narrowband Gaussian random process with zero mean. Two types of modulating signal are considered, the baseband and bandpass modulating signals. More specifically, the effects of the center frequency of the modulating signal, the modulating degree, the bandwidth ration of the noise-like laser to the modulating signal, the effective average quantum rate, and input CNR on output SNR are studied. The detection characteristics of the noise-like laser are also made clear by comparison with the case of a coherent laser.  相似文献   
952.
A panel session held at the 1965 Aerospace Conference, Houston,Tex., June 23, 1965. Panelists discussed Life-Suppport interfaces with Electric Power; Communications; Navigation; System Integration for Future Space Programs; and Reliability.  相似文献   
953.
Ground level events (GLEs) occupy the high-energy end of gradual solar energetic particle (SEP) events. They are associated with coronal mass ejections (CMEs) and solar flares, but we still do not clearly understand the special conditions that produce these rare events. During Solar Cycle 23, a total of 16 GLEs were registered, by ground-based neutron monitors. We first ask if these GLEs are clearly distinguishable from other SEP events observed from space. Setting aside possible difficulties in identifying all GLEs consistently, we then try to find observables which may unmistakably isolate these GLEs by studying the basic properties of the associated eruptions and the active regions (ARs) that produced them. It is found that neither the magnitudes of the CMEs and flares nor the complexities of the ARs give sufficient conditions for GLEs. It is possible to find CMEs, flares or ARs that are not associated with GLEs but that have more extreme properties than those associated with GLEs. We also try to evaluate the importance of magnetic field connection of the AR with Earth on the detection of GLEs and their onset times. Using the potential field source surface (PFSS) model, a half of the GLEs are found to be well-connected. However, the GLE onset time with respect to the onset of the associated flare and CME does not strongly depend on how well-connected the AR is. The GLE onset behavior may be largely determined by when and where the CME-driven shock develops. We could not relate the shocks responsible for the onsets of past GLEs with features in solar images, but the combined data from the Solar TErrestrial RElations Observatory (STEREO) and the Solar Dynamics Observatory (SDO) have the potential to change this for GLEs that may occur in the rising phase of Solar Cycle 24.  相似文献   
954.
955.
A subsurface radar using a multi-frequency signal has been developed. It is designated for surveying building structures and works. The characteristic feature of this device is the possibility of obtaining sounding plane radio images featuring a high resolution attaining 1…2 cm. The main applications of this device includes the survey of building structures to reveal their heterogeneities and defects and the investigation of premises to detect bugging devices  相似文献   
956.
Computer simulation of liquid fuel jet injection into heated atmosphere of combustion chamber, mixture formation, ignition and combustion need adequate modeling of evaporation, which is extremely important for the curved surfaces in the presence of strong heat and mass diffusion fluxes. Combustion of most widely spread hydrocarbon fuels takes place in a gas-phase regime. Thus, evaporation of fuel from the surface of droplets turns to be one of the limiting factors of the process as well. The problems of fuel droplets atomization, evaporation being the key factors for heterogeneous reacting mixtures, the non-equilibrium effects in droplets atomization and phase transitions will be taken into account in describing thermal and mechanical interaction of droplets with streaming flows. In the present paper processes of non-equilibrium evaporation of small droplets will be discussed. As it was shown before, accounting for non-equilibrium effects in evaporation for many types of widely used liquids is crucial for droplet diameters less than 100 μm, while the surface tension effects essentially manifest only for droplets below 0.1 μm. Investigating the behavior of individual droplets in a heated air flow allowed to distinguish two scenarios for droplet heating and evaporation. Small droplets undergo successively heating, then cooling due to heat losses for evaporation, and then rapid heating till the end of their lifetime. Larger droplets could directly be heated up to a critical temperature and then evaporate rapidly. Droplet atomization interferes the heating, evaporation and combustion scenario. The scenario of fuel spray injection and self-ignition in a heated air inside combustion chamber has three characteristic stages. At first stage of jet injection droplets evaporate very rapidly thus cooling the gas at injection point, the liquid jet is very short and changes for a vapor jet. At second stage liquid jet is becoming longer, because evaporation rate decreases due to decrease of temperature. But combustion of fuel vapor begins which brings to increase of heat flux to droplets and accelerates evaporation. The length of the liquid jet decreases again and remains constant slightly oscillating.  相似文献   
957.
Bandwidth maximization for satellite laser communication   总被引:3,自引:0,他引:3  
Free space optical communication between satellites networked together can make possible high speed communication between different places on Earth. The basic free space optical communication network includes at least two satellites. In order to communicate between them, the transmitter satellite must track the beacon of the receiver satellite and point the information optical beam in its direction. The pointing systems for laser satellite communication suffer during tracking from vibration due to electronic noise, background radiation from interstellar objects such as Sun, Moon, Earth, and Stars in the tracking field of view, and mechanical impact from satellite internal and external sources. Due to vibrations the receiver receives less power. This effect limits the system bandwidth for given bit error rate (BER). In this research we derive an algorithm to maximize the communication system bandwidth using the transmitter telescope gain as a free variable based on the vibration statistics model and the system parameters. Our model makes it possible to adapt the bandwidth and transmitter gain to change of vibration amplitude. We also present an example of a practical satellite network which includes a direct detection receiver with an optical amplifier. A bandwidth improvement of three orders of magnitude is achieved in this example for certain conditions, as compared with an unoptimized system  相似文献   
958.
Previous research at the Air Force Institute of Technology (AFIT) has resulted in the design of a differential Global Positioning System (DGPS) aided INS-based (inertial navigation system) precision landing system (PLS) capable of meeting the FAA precision requirements for instrument landings. The susceptibility of DGPS transmissions to both intentional and nonintentional interference/jamming and spoofing must be addressed before DGPS may be safely used as a major component of such a critical navigational device. This research applies multiple model adaptive estimation (MMAE) techniques to the problem of detecting and identifying interference/jamming and spoofing in the DGPS signal. Such an MMAE is composed of a bank of parallel filters, each hypothesizing a different failure status, along with an evaluation of the current probability of each hypothesis being correct, to form a probability-weighted average state estimate as an output. For interference/jamming degradation represented as increased measurement noise variance, simulation results show that, because of the good failure detection and isolation (FDI) performance using MMAE, the blended navigation performance is essentially that of a single extended Kalman filter (EKF) artificially informed of the actual interference noise variance. However, a standard MMAE is completely unable to detect spoofing failures (modeled as a bias or ramp offset signal directly added to the measurement). This work describes a moving-bank pseudoresidual MMAE (PRMMAE) to detect and identify such spoofing. Using the PRMMAE algorithm, spoofing is very effectively detected and isolated; the resulting navigation performance is equivalent to that of an EKF operating in an environment without spoofing  相似文献   
959.
Mechanisms of formation of cyclonic vortices in the tropical atmosphere of the Earth are investigated in the intratropical zone of convergence using numerical simulation made with the complete system of equations of gas dynamics taking into account transport of infrared radiation, phase transitions of water vapor into microdrops of water and ice particles, and sedimentation of these drops and ice particles in the field of gravity force. Observational data on the structure of dominant air streams, which are formed in the intratropical zone of convergence over the North Atlantic in the periods of its highest thermodynamic intensity and instability, are used in the initial and boundary conditions of the model. Formation of cyclonic vortex flows is obtained numerically at sufficiently strong bending of the intratropical zone of convergence. The results of numerical modeling are compared with the data of satellite microwave monitoring: global radio thermal fields of the Earth from the electronic collection GLOBAL-Field allowing one to study the structure of atmospheric motions in a wide range of space-time scales.  相似文献   
960.
Recent research proves that wings with leading-edge tubercles have the ability to perform efficiently in post-stall region over the conventional straight wing. Moreover, the conventional straight wing outperforms the tubercled wing at a pre-stall region which is quintessential. Even though tubercled wing offers great performance enhancement, because of the complexity of the flow, the trough region of the tubercled wing is more prone to flow separation. Henceforth, the present paper aims at surface blowing – an active flow control technique over the tubercled wing to enhance the aerodynamic efficiency by positively influencing its lift characteristics without causing any additional drag penalty. Flow parameters like blowing velocity ratios and the location of blowing were chosen to find the optimised configuration keeping the amplitude and frequency of the leading-edge tubercles constant as 0.12 c and 0.25 c respectively. Numerical investigations were carried out over the baseline tubercled wing and tubercled wing with surface blowing at various blowing jet velocity ratios 0.5, 1 and 2 over four different chordwise locations ranging from 0.3 c to 0.8 c.The results confirm that blowing at various x/c with different blowing velocity ratios performs better than the conventional tubercled wing. Comparatively, blowing velocity ratio 2 at 0.3 c shows peak performance of about 28% enhancement in the lift characteristics relative to the baseline model. Particularly, in the pre-stall region, 25–50% increase in aerodynamic efficiency is evident over the tubercled wing with surface blowing compared with the baseline case. Additionally,attempts were made to delineate the physical significance of the flow separation mechanism due to blowing by visualizing the streamline pattern.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号