首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2818篇
  免费   31篇
  国内免费   20篇
航空   1133篇
航天技术   1058篇
综合类   13篇
航天   665篇
  2022年   13篇
  2021年   31篇
  2019年   25篇
  2018年   99篇
  2017年   85篇
  2016年   56篇
  2015年   23篇
  2014年   90篇
  2013年   104篇
  2012年   94篇
  2011年   152篇
  2010年   112篇
  2009年   160篇
  2008年   163篇
  2007年   84篇
  2006年   70篇
  2005年   87篇
  2004年   89篇
  2003年   90篇
  2002年   60篇
  2001年   81篇
  2000年   39篇
  1999年   48篇
  1998年   61篇
  1997年   52篇
  1996年   47篇
  1995年   64篇
  1994年   38篇
  1993年   38篇
  1992年   63篇
  1991年   16篇
  1990年   19篇
  1989年   47篇
  1988年   23篇
  1987年   20篇
  1986年   16篇
  1985年   69篇
  1984年   65篇
  1983年   49篇
  1982年   52篇
  1981年   68篇
  1980年   36篇
  1979年   17篇
  1978年   21篇
  1977年   10篇
  1976年   16篇
  1975年   15篇
  1974年   12篇
  1971年   11篇
  1969年   9篇
排序方式: 共有2869条查询结果,搜索用时 15 毫秒
931.
Equilibrium adsorption isotherm data for the purine base adenine has been obtained on several prebiotically relevant minerals by frontal analysis using water as a mobile phase. Adenine is far displaced toward adsorption on pyrite (FeS2), quartz (SiO2), and pyrrhotite (FeS), but somewhat less for magnetite (Fe3O4) and forsterite (Mg2SiO4). The prebiotic prevalence of these minerals would have allowed them to act as a sink for adenine; removal from the aqueous phase would confer protection from hydrolysis as well, establishing a nonequilibrium thermodynamic framework for increased adenine synthesis. Our results provide evidence that adsorption phenomena may have been critical for the primordial genetic architecture.  相似文献   
932.
As the field of astrobiology matures and search strategies for life on other worlds are developed, the need to analyze in a systematic way the plausibility for life on other planetary systems becomes increasingly apparent. We propose the adoption of a simple plausibility of life (POL) rating system based on specific criteria. Category I applies to any body shown to have conditions essentially equivalent to those on Earth. Category II applies to bodies for which there is evidence of liquid water and sources of energy and where organic compounds have been detected or can reasonably be inferred (Mars, Europa). Category III applies to worlds where conditions are physically extreme but possibly capable of supporting exotic forms of life unknown on Earth (Titan, Triton). Category IV applies to bodies that could have seen the origin of life prior to the development of conditions so harsh as to make its perseverance at present unlikely but conceivable in isolated habitats (Venus, Io). Category V would be reserved for sites where conditions are so unfavorable for life by any reasonable definition that its origin or persistence there cannot be rated a realistic probability (the Sun, gas giant planets). The proposed system is intended to be generic. It assumes that life is based on polymeric chemistry occurring in a liquid medium with uptake and degradation of energy from the environment. Without any additional specific assumptions about the nature of life, the POL system is universally applicable.  相似文献   
933.
High reproduction rates make the bacterial component of ecosystems a good indicator of the state of the system on the whole. This determines the necessity to develop rapid monitoring of the functional state of the bacterial component of small ecosystems. Information about substrate concentration in the population is indicative of the state of the bacterial culture. Conventional methods of monitoring the concentration of integral substrate in the system take time much longer than the changes in the ecosystem. The paper presents theoretical foundations for the logical sequence "catalase activity--intracellular substrate concentration--estimate of substrate consumed by bacteria" for experimental verification and as a consequence of development of the integral method of monitoring the bacterial population on the basis of determining bacterial catalase activity. Grant numbers: 04-96017, N25.  相似文献   
934.
The microbial diversity of Kali chimney plumes, part of a hydrothermal vent field in the Rodriguez Triple Junction, Indian Ocean (depth approximately 2,240 m), was examined in an attempt to discover "extremotolerant" microorganisms that have evolved unique resistance capabilities to this harsh environment. Water and sediment samples were collected from the vent and from sediments located at various distances (2-20 m) away from and surrounding the chimney. Samples were screened for hypertolerant microbes that are able to withstand multiple stresses. A total of 46 isolates were selected for exposure to a number of perturbations, such as heat shock, desiccation, H(2)O(2), and ultraviolet (UV) and gamma-irradiation. The survival of Psychrobacter sp. L0S3S-03b following exposure to >1,000 J/m(2) UV(254) radiation was particularly intriguing amid a background of varying levels of resistance. Vegetative cells of this non-spore-forming microbe not only survived all of the treatments, but also exhibited a 90% lethal dose of 30 s when exposed to simulated martian UV radiation and a 100% lethal dose of 2 min when exposed to full spectrum UV, which is comparable to findings for bacterial endospores.  相似文献   
935.
Atmospheric erosion of CO2-rich Earth-size exoplanets due to coronal mass ejection (CME)-induced ion pick up within close-in habitable zones of active M-type dwarf stars is investigated. Since M stars are active at the X-ray and extreme ultraviolet radiation (XUV) wave-lengths over long periods of time, we have applied a thermal balance model at various XUV flux input values for simulating the thermospheric heating by photodissociation and ionization processes due to exothermic chemical reactions and cooling by the CO2 infrared radiation in the 15 microm band. Our study shows that intense XUV radiation of active M stars results in atmospheric expansion and extended exospheres. Using thermospheric neutral and ion densities calculated for various XUV fluxes, we applied a numerical test particle model for simulation of atmospheric ion pick up loss from an extended exosphere arising from its interaction with expected minimum and maximum CME plasma flows. Our results indicate that the Earth-like exoplanets that have no, or weak, magnetic moments may lose tens to hundreds of bars of atmospheric pressure, or even their whole atmospheres due to the CME-induced O ion pick up at orbital distances 相似文献   
936.
Smith JN  Shock EL 《Astrobiology》2007,7(6):891-904
The common thread of energy release suggests that diverse microbial metabolic processes can be compared through thermodynamic analyses. The resulting energy and power requirements can provide quantitative constraints on habitability. Because previous thermodynamic analyses have focused on the minimum amount of energy needed for the growth of a microorganism or community, the focus of this study is to gain a fuller understanding of the microbial response to highly habitable conditions. This communication summarizes the results of a thermodynamic analysis of the energy and power consumed by microorganisms in experiments that were designed to optimize growth. Reports of microbial growth experiments taken from the literature were combined with speciation and standard state calculations to assess the overall Gibbs energy change during the experiments. Results show that similar numbers of cells (10(9) to 10(10) ) were produced in these experiments regardless of the duration of log phase growth (from <2 to >200 hours) or the total Gibbs energy change [from 1.3-29.6 kJ (mol electrons transferred)(1)]. As a result, optimal growth conditions appear to produce between 10(10) and 10(14) cells per watt of power consumed.  相似文献   
937.
在常规自相关粒子图像测速(PIV)系统的基础上,发展了一个采用CCD像机的互相关粒子图像测速系统。用这一新系统测量了对抗流流场的结果表明,这一技术克服了自相关粒子图像测速技术在测量具有滞止点的流场中的困难。实验说明,与自相关粒子图像测速技术相比,这一技术更快捷有效。  相似文献   
938.
Microorganisms metabolizing on clay grains in 3-km-deep Greenland basal ice   总被引:1,自引:0,他引:1  
We have discovered > 10(8) microbial cells/cm3 attached to clay grains in the bottom 13 m of the GISP2 (Greenland Ice Sheet Project) ice core. Their concentration correlates with huge excesses of CO2 and CH4. We show that Fe-reducing bacteria produce most of the excess CO2 and methanogenic archaea produce the excess CH4. The number of attached cells per clay grain is proportional to grain perimeter rather than to area, which implies that nutrients are accessed at grain edges. We conclude that Fe-reducing microbes immobilized on clay surfaces metabolize via "shuttle" molecules that transport electrons to grain edges, where they reduce Fe(III) ions at edges to Fe(II) while organic acid ions are oxidized to CO2. Driven by the concentration gradient, electrons on Fe(II) ions at grain edges "hop" to Fe(III) ions inward in the same edges and oxidize them. The original Fe(III) ions can then attach new electrons from shuttle molecules at the edges. Our mechanism explains how Fe-reducers can reduce essentially all Fe(III) in clay minerals. We estimate that the Fe(III) in clay grains in the GISP2 silty ice can sustain Fe-reducing bacteria at the ambient temperature of -9 degrees C for approximately 10(6) years. F420 autofluorescence imaging shows that > 2.4% of the cells are methanogens, which account for the excess methane.  相似文献   
939.
A technique of multiobjective parametric design of line-of-sight stabilization system for an airborne electro-optical device is developed. The multiobjective design of the PI controller for the stabilization system being considered is performed.  相似文献   
940.
The helicopter main rotor in forward flight is considered in this paper. The results for rigid blades and elastic blades are compared by the method of coupled simulation. The influence of the structural damping coefficient on the blade in-flight deformation is also considered.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号