首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
航空   7篇
航天技术   6篇
综合类   1篇
航天   3篇
  2019年   1篇
  2018年   1篇
  2014年   1篇
  2011年   1篇
  2010年   4篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  1999年   2篇
  1985年   2篇
  1982年   1篇
  1976年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
11.
The solar/interplanetary events in early August 1972 are summarized in Section 1 (Introduction), Section 2 (August 1972 Events in the Solar Cycle 20), Section 3 (Evolution of Solar Active Region: McMath region No. 11976 and its flare-activity), Section 4 (Radio, X-ray, and Proton Characteristics of Four Major Solar Flares: F-1 at 0316 UT on 2 August, F-2 at 1958 UT on 2 August, F-3 at 0626 UT on 4 August, and F-4 at 1522 UT on 7 August), Section 5 (Interplanetary Shock Waves: observations of the shock waves generated from the four major solar flares at several points in interplanetary space, the Earth, Pioneer-9, Pioneer-10, etc.; interplanetary scintillations; shock trajectories in the heliosphere), Section 6 (Variations of Solar and Galactic Cosmic Rays: four solar proton events observed in the vicinity of the earth and at the Pioneer-9 location in the course of interplanetary disturbances; Forbush decreases of cosmic ray intensity; the spikeshaped variation in solar and galactic cosmic rays on 5 August), and Section 7 (Conclusions).  相似文献   
12.
Time profiles of some physical values in earthward fast flows in the plasma sheet are observed at three dimensionally different positions by employing virtual satellites located in the three-dimensional magnetohydrodynamic simulation domain, and these simulations are done on the basis of the spontaneous fast reconnection model. In the spontaneous fast reconnection evolution, the width of the flow channel is narrow in the dawn-dusk direction, and it does not spread until the plasma collides with the magnetic loop. The enhancements in Bz and Vx are larger at the center of the fast flow channel than those at its dawn and dusk edges, reflecting the differences in the reconnection rate in the diffusion region. The enhancement in Vx is shorter near the plasma sheet boundary layer than that near the neutral sheet, reflecting the changes in the thickness of the flow channel.  相似文献   
13.
Solar-B     
Following the successful Yohkoh satellite which is continuously operating since August 1991, the solar physics community in Japan is now preparing for a Japan's next solar physics mission, Solar-B, whose primary objective is to study the connection of the dynamics and heating in the solar corona with the magnetic field at the solar surface. Solar-B will carry a medium-sized optical telescope with capability of measuring vector magnetic fields at the solar surface, together with two X-ray/EUV imaging telescopes capable of measuring the dynamics and physical conditions of hot plasma in the solar corona. These telescopes are prepared under the international collaborations with U.S.A. (NASA) and U.K. (PPARC). ISAS schedules to launch Solar-B as its 22nd science satellite in summer 2005. The Solar-B program is now in the proto-model manifacture/test phase and the baseline design of the satellite as well as the three telescopes is defined.  相似文献   
14.
The functions of KAGUYA(SELENE) Operation and Analysis Center (SOAC) are to operate three satellites: the main orbiter KAGUYA and two small satellites, Relay satellite OKINA and VRAD (VLBI (Very Long Baseline Interferometry) RADio source) satellite OUNA; and to process, archive and provide mission data. SOAC has two main functional areas, “Tracking and Control system” and “Mission Operation and Data Analysis system.” The former is for operational planning of bus and mission instruments including satellite navigation, and for the implementation of those plans and for the evaluation of satellite conditions. The latter is the system that processes, archives and provides mission data, and which principal investigators use to generate higher-level data products. Data up to the end of the operation in June 2009 have been processed and the total amount of Level-2 data products reaches about 50 TB. The data products have been released to the public since November 2009.  相似文献   
15.
The main molecular processes to produce the hydrogen comae of comets are now well known: Water, the main constituent of cometary atmospheres, is photodissociated by the solar ultraviolet radiation to form the high (20 km s−1) and low (8 km s−1) velocity components of the atomic hydrogen. The hydrogen clouds of various fresh comets have been observed in 1216Å by a number of spacecrafts. Ultraviolet observations of short period comets are, however, rather rare. Consequently Comet P/Halley in this apparition is a good object to obtain new physics of the hydrogen coma. Strong breathing of the hydrogen coma of this comet found by “Suisei” provides just such an example. The rotational period of Comet Halley's nucleus, its activity in the form of outbursts alone, and the position of jet sources etc. are determined from the breathing phenomena. Atomic hydrogen from organic compounds with a velocity of 11 km s−1 play an important role in that analysis. The time variations of the water production rate of Comet Halley during this apparition observed by various spacecrafts appear to be in agreement with each other and are about 1.5–2 times larger than the standard model. The difficulty of the calibration problem was emphasized.  相似文献   
16.
MAP-PACE (MAgnetic field and Plasma experiment—Plasma energy Angle and Composition Experiment) on SELENE (Kaguya) has completed its ~1.5-year observation of low-energy charged particles around the Moon. MAP-PACE consists of 4 sensors: ESA (Electron Spectrum Analyzer)-S1, ESA-S2, IMA (Ion Mass Analyzer), and IEA (Ion Energy Analyzer). ESA-S1 and S2 measured the distribution function of low-energy electrons in the energy range 6 eV–9 keV and 9 eV–16 keV, respectively. IMA and IEA measured the distribution function of low-energy ions in the energy ranges 7 eV/q–28 keV/q and 7 eV/q–29 keV/q. All the sensors performed quite well as expected from the laboratory experiment carried out before launch. Since each sensor has a hemispherical field of view, two electron sensors and two ion sensors installed on the spacecraft panels opposite each other could cover the full 3-dimensional phase space of low-energy electrons and ions. One of the ion sensors IMA is an energy mass spectrometer. IMA measured mass-specific ion energy spectra that have never before been obtained at a 100 km altitude polar orbit around the Moon. The newly observed data show characteristic ion populations around the Moon. Besides the solar wind, MAP-PACE-IMA found four clearly distinguishable ion populations on the dayside of the Moon: (1) Solar wind protons backscattered at the lunar surface, (2) Solar wind protons reflected by magnetic anomalies on the lunar surface, (3) Reflected/backscattered protons picked-up by the solar wind, and (4) Ions originating from the lunar surface/lunar exosphere.  相似文献   
17.
The term “ultraviolet (UV) burst” is introduced to describe small, intense, transient brightenings in ultraviolet images of solar active regions. We inventorize their properties and provide a definition based on image sequences in transition-region lines. Coronal signatures are rare, and most bursts are associated with small-scale, canceling opposite-polarity fields in the photosphere that occur in emerging flux regions, moving magnetic features in sunspot moats, and sunspot light bridges. We also compare UV bursts with similar transition-region phenomena found previously in solar ultraviolet spectrometry and with similar phenomena at optical wavelengths, in particular Ellerman bombs. Akin to the latter, UV bursts are probably small-scale magnetic reconnection events occurring in the low atmosphere, at photospheric and/or chromospheric heights. Their intense emission in lines with optically thin formation gives unique diagnostic opportunities for studying the physics of magnetic reconnection in the low solar atmosphere. This paper is a review report from an International Space Science Institute team that met in 2016–2017.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号