首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9778篇
  免费   851篇
  国内免费   524篇
航空   5097篇
航天技术   3099篇
综合类   492篇
航天   2465篇
  2024年   42篇
  2023年   56篇
  2022年   134篇
  2021年   231篇
  2020年   148篇
  2019年   165篇
  2018年   329篇
  2017年   260篇
  2016年   235篇
  2015年   207篇
  2014年   352篇
  2013年   388篇
  2012年   394篇
  2011年   529篇
  2010年   480篇
  2009年   571篇
  2008年   552篇
  2007年   396篇
  2006年   301篇
  2005年   321篇
  2004年   265篇
  2003年   305篇
  2002年   291篇
  2001年   317篇
  2000年   229篇
  1999年   261篇
  1998年   255篇
  1997年   185篇
  1996年   231篇
  1995年   265篇
  1994年   241篇
  1993年   157篇
  1992年   187篇
  1991年   80篇
  1990年   74篇
  1989年   156篇
  1988年   77篇
  1987年   64篇
  1986年   73篇
  1985年   194篇
  1984年   150篇
  1983年   109篇
  1982年   120篇
  1981年   217篇
  1980年   51篇
  1979年   47篇
  1978年   51篇
  1977年   42篇
  1975年   50篇
  1974年   40篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
371.
The paper elaborates on “ lessons learned” from two recent ESA workshops, one focussing on the role of Innovation in the competitiveness of the space sector and the second on technology and engineering aspects conducive to better, faster and cheaper space programmes. The paper focuses primarily on four major aspects, namely:
1. a) the adaptations of industrial and public organisations to the global market needs;
2. b) the understanding of the bottleneck factors limiting competitiveness;
3. c) the trends toward new system architectures and new engineering and production methods;
4. d) the understanding of the role of new technology in the future applications.

Under the pressure of market forces and the influence of many global and regional players, applications of space systems and technology are becoming more and more competitive. It is well recognised that without major effort for innovation in industrial practices, organisations, R&D, marketing and financial approaches the European space sector will stagnate and loose its competence as well as its competitiveness. It is also recognised that a programme run according to the “better, faster, cheaper” philosophy relies on much closer integration of system design, development and verification, and draws heavily on a robust and comprehensive programme of technology development, which must run in parallel and off-line with respect to flight programmes.

A company's innovation capabilities will determine its future competitive advantage (in time, cost, performance or value) and overall growth potential. Innovation must be a process that can be counted on to provide repetitive, sustainable, long-term performance improvements. As such, it needs not depend on great breakthroughs in technology and concepts (which are accidental and rare). Rather, it could be based on bold evolution through the establishment of know-how, application of best practices, process effectiveness and high standards, performance measurement, and attention to customers and professional marketing. Having a technological lead allows industry to gain a competitive advantage in performance, cost and opportunities. Instrumental to better competitiveness is an R&D effort based on the adaptation of high technology products, capable of capturing new users, increasing production, decreasing the cost and delivery time and integrating high level of intelligence, information and autonomy. New systems will have to take in to account from the start what types of technologies are being developed or are already available in other areas outside space, and design their system accordingly. The future challenge for “faster, better, cheaper” appears to concern primarily “cost-effective”, performant autonomous spacecraft, “cost-effective”, reliable launching means and intelligent data fusion technologies and robust software serving mass- market real time services, distributed via EHF bands and Internet.

In conclusion, it can be noticed that in the past few years new approaches have considerably enlarged the ways in which space missions can be implemented. They are supported by true innovations in mission concepts, system architecture, development and technologies, in particular for the development of initiatives based on multi-mission mini-satellites platforms for communication and Earth observation missions. There are also definite limits to cost cutting (such as lowering heads counts and increasing efficiency), and therefore the strategic perspective must be shifted from the present emphasis on cost-driven enhancement to revenue-driven improvements for growth. And since the product life-cycle is continuously shortening, competitiveness is linked very strongly with the capability to generate new technology products which enhance cost/benefit performance.  相似文献   

372.
Tether Satellite System Collision Study   总被引:1,自引:0,他引:1  
Chobotov  V.A.  Mains  D.L. 《Space Debris》1999,1(2):99-112
A study was performed to determine the probability of collision with resident space objects and untrackable debris for the tether component of the Tethered Satellite System (TSS) after it broke away from the Space Shuttle orbiter (mission STS-75) in February 1996. Both an analytical and a numerical approach were used in this study, and the results obtained with these two methods were found to be in good agreement. These results show that the deployed tether is expected to have been impacted by several particles 0.1mm or larger in size. The probability of collision with objects 10cm in size or larger was on the order of 10–3 per month. Since the severed tether reentered within one month after deployment, the collision hazard to other objects while in orbit was small. The analytical methods used in this study are useful for tether collision evaluations in general.  相似文献   
373.
Variable-geometry truss structures are likely to be used extensively in the future for in-orbit space construction. This paper considers dynamics formulation and vibration control of such structures. The truss system is modelled as a collection of sub-structures consisting of truss booms, prismatic actuator elements, and in some cases a manipulator at the end. Each truss boom is treated as a separate ‘link’ and its flexibility is modelled using the finite element method. Equations of motion for individual sub-structures are obtained which are then assembled. The non-working constraint forces are eliminated to obtain the equations governing the constrained dynamics of the entire system. For vibration control, the singular perturbation method is employed to construct two reduced-order models, for quasi-static motion and for modal co-ordinates, respectively. Computed torque with PD control is applied to maintain the quasi-static motion, while an optimal LQR method is used for vibration control. Typical simulation results are presented for the planar case.  相似文献   
374.
Using a novel space platform-based manipulator with slewing and deployable links, the paper addresses two issues of considerable importance: (a) How important is it to model flexibility of the system? (b) How many modes are needed to adequately represent the elastic character? Results suggest that the fundamental mode is able to capture physics of the response quite accurately. Due to its massive character, the platform dynamics is virtually unaffected, even by severe maneuvers of the manipulator. Hence, treating the platform as rigid would save the computational cost without affecting the accuracy. Although the link flexibility does affect the manipulator's tip vibration, the joint and platform vibrations remain negligible. The revolute joint flexibility appears to be an important parameter affecting both the joint as well as tip responses. The information should prove useful in the design of this new class of manipulators.  相似文献   
375.
The fine structure of the Auroral Kilometric Radiation (AKR) is studied using multicomponent measurements of the electric component of the electromagnetic field in the frequency band 4 kHz–1 MHz (the POLRAD experiment onboard the INTERBALL-2 satellite). Special attention is paid to the measurements near the source of the AKR: under conditions when the lower boundary of the emission range descended sufficiently low, down to the local gyrofrequency of electrons. From the analysis of the electric field structure the conclusion is drawn that the bulk of the AKR power is carried by the signal component fast variable in time and frequency (flickering component). The power of a constant component (continuum) is lower by at least an order of magnitude. During strong bursts of the AKR, the relative contribution of the flickering component increases. The spatial structure of the zone of generation has at least three characteristic scales along and across the magnetic field.  相似文献   
376.
Head-down tilt models have been used as ground-based simulations of microgravity. Our previous animal research has demonstrated that there are significant changes in fluid distribution within 2 h after placement in a 45 degrees head-down tilt (45HDT) position and these changes in fluid distribution were still present after 14 days of 45HDT. Consequently, we investigated changes in fluid distribution during recovery from 16 days of 45HDT. Changes in radioactive tracer distribution and organ/body weight ratio were examined in rats randomly assigned to a 45HDT or prone control group. The 45HDT rats were suspended for 16 days and then allowed to recover at the prone position 0, 77, 101, or 125 h post-suspension. Animals were injected with technetium-labeled diethylenetriamine pentaacetate (99mTcDTPA, MW=492 amu, physical half-life of 6.02 h) and then killed 30 min post-injection. Lungs, heart, liver, spleen, kidneys, and brain were harvested, weighed, and measured for radioactive counts. Statistical analyses included two-way analysis of variance (ANOVA) that compared 45HDT versus controls at the four experimental time points. The organ weight divided by the body weight ratio for the brain, heart, kidneys and liver in the 45HDT rats was significantly different than the control rats, regardless of time (treatment). There was no difference between the different time points (time). The average 99mTcDTPA count divided by the organ weight ratio values for the heart, liver, and spleen were significantly higher in the 45HDT group than the control group. The average counts for the heart and spleen were significantly higher at 77, 101, and 125 h than at time zero. We conclude that the major organs have different recovery patterns after 45HDT for 16 days in the rat.  相似文献   
377.
The problem is considered of using the PROGRESS transport spacecraft, which will deliver the payload on the ISS, as a free flying platform for realization of space experiments. For maintenance of the ISS 5-6 PROGRESS flights per year are planned. Usually after delivery of the payload the PROGRESS undocks from the ISS and burns down in the Earth atmosphere. However, the operating conditions of its onboard systems allow to prolong operation and to make free flight near to the station and repeatedly to be docked to it. It is offered to use this possibility for performing experiments on Material Science.  相似文献   
378.
In the 36 years between June 1965 and February 2001, the US human space flight program has conducted 100 spacewalks, or extravehicular activities (EVAs), as NASA officially calls them. EVA occurs when astronauts wearing spacesuits travel outside their protective spacecraft to perform tasks in the space vacuum environment. US EVA started with pioneering feasibility tests during the Gemini Program. The Apollo Program required sending astronauts to the moon and performing EVA to explore the lunar surface. EVA supported scientific mission objectives of the Skylab program, but may be best remembered for repairing launch damage to the vehicle and thus saving the program. EVA capability on Shuttle was initially planned to be a kit that could be flown at will, and was primarily intended for coping with vehicle return emergencies. The Skylab emergency and the pivotal role of EVA in salvaging that program quickly promoted Shuttle EVA to an essential element for achieving mission objectives, including retrieving satellites and developing techniques to assemble and maintain the International Space Station (ISS). Now, EVA is supporting assembly of ISS. This paper highlights development of US EVA capability within the context of the overarching mission objectives of the US human space flight program.  相似文献   
379.
The paper considers problems of biosynthesis of higher plants' biomass and "biological incineration" of plant wastes in a working physical model of biological LSS. The plant wastes are "biologically incinerated" in a special heterotrophic block involving Californian worms, mushrooms and straw. The block processes plant wastes (straw, haulms) to produce soil-like substrate (SLS) on which plants (wheat, radish) are grown. Gas exchange in such a system consists of respiratory gas exchange of SLS and photosynthesis and respiration of plants. Specifics of gas exchange dynamics of high plants--SLS complex has been considered. Relationship between such a gas exchange and PAR irradiance and age of plants has been established. Nitrogen and iron were found to the first to limit plants' growth on SLS when process conditions are deranged. The SLS microflora has been found to have different kinds of ammonifying and denitrifying bacteria which is indicative of intensive transformation of nitrogen-containing compounds. The number of physiological groups of microorganisms in SLS was, on the whole, steady. As a result, organic substances--products of exchange of plants and microorganisms were not accumulated in the medium, but mineralized and assimilated by the biocenosis. Experiments showed that the developed model of a man-made ecosystem realized complete utilization of plant wastes and involved them into the intrasystem turnover.  相似文献   
380.
The primary objective of the Laser Interferometer Space Antenna (LISA) mission is to detect and observe gravitational waves from massive black holes and galactic binaries in the frequency range 10−4 to 10−1 Hz. This low-frequency range is inaccessible to ground-based interferometers because of the unshieldable background of local gravitational noise and because ground-based interferometers are limited in length to a few km. LISA is an ESA cornerstone mission and recently had a system study (Ref. 1) carried out by a consortium led by Astrium, which confirmed the basic configuration for the payload with only minor changes, and provided detailed concepts for the spacecraft and mission design. The study confirmed the need for a drag-free technology demonstration mission to develop the inertial sensors for LISA, before embarking on the build of the flight sensors. With a technology demonstration flight in 2005, it would be possible to carry out LISA as a joint ESA-NASA mission with a launch by 2010 subject to the funding programmatics. The baseline for LISA is three disc-like spacecraft each of which consist of a science module which carries the laser interferometer payload (two in each science module) and a propulsion module containing an ion drive and the hydrazine thrusters of the AOCS. The propulsion module is used for the transfer from earth escape trajectory provided by the Delta II launch to the operational orbit. Once there the propulsion module is jettisoned to reduce disturbances on the payload. Detailed analysis of thermal and gravitational disturbances, a model of the drag-free control and of the interferometer operation confirm that the strain sensitivity of the interferometer will be achieved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号