首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5627篇
  免费   674篇
  国内免费   492篇
航空   3047篇
航天技术   1605篇
综合类   439篇
航天   1702篇
  2024年   15篇
  2023年   52篇
  2022年   116篇
  2021年   176篇
  2020年   135篇
  2019年   130篇
  2018年   203篇
  2017年   198篇
  2016年   179篇
  2015年   177篇
  2014年   258篇
  2013年   274篇
  2012年   282篇
  2011年   358篇
  2010年   369篇
  2009年   405篇
  2008年   350篇
  2007年   265篇
  2006年   211篇
  2005年   223篇
  2004年   158篇
  2003年   180篇
  2002年   204篇
  2001年   175篇
  2000年   139篇
  1999年   146篇
  1998年   120篇
  1997年   124篇
  1996年   103篇
  1995年   121篇
  1994年   88篇
  1993年   73篇
  1992年   88篇
  1991年   47篇
  1990年   42篇
  1989年   57篇
  1988年   37篇
  1987年   24篇
  1986年   23篇
  1985年   69篇
  1984年   56篇
  1983年   44篇
  1982年   45篇
  1981年   67篇
  1980年   35篇
  1979年   18篇
  1978年   20篇
  1976年   18篇
  1975年   15篇
  1974年   14篇
排序方式: 共有6793条查询结果,搜索用时 109 毫秒
921.
Inflatable/deployable structures are under consideration as habitats for future Lunar surface science operations. The use of non-traditional structural materials combined with the need to maintain a safe working environment for extended periods in a harsh environment has led to the consideration of an integrated structural health management system for future habitats, to ensure their integrity. This article describes recent efforts to develop prototype sensing technologies and new self-healing materials that address the unique requirements of habitats comprised mainly of soft goods. A new approach to detecting impact damage is discussed, using addressable flexible capacitive sensing elements and thin film electronics in a matrixed array. Also, the use of passive wireless sensor tags for distributed sensing is discussed, wherein the need for on-board power through batteries or hardwired interconnects is eliminated. Finally, the development of a novel, microencapuslated self-healing elastomer with applications for inflatable/deployable habitats is reviewed.  相似文献   
922.
The advantages of a constant volume combustion cycle as compared to constant pressure combustion in terms of thermodynamic efficiency has focused the search for advanced propulsion on detonation engines. Detonation of acetylene mixed with oxygen in various proportions is studied using mathematical modeling. Simplified kinetics of acetylene burning includes 11 reactions with 9 components. Deflagration to detonation transition (DDT) is obtained in a cylindrical tube with a section of obstacles modeling a Shchelkin spiral; the DDT takes place in this section for a wide range of initial mixture compositions. A modified ka-omega turbulence model is used to simulate flame acceleration in the Shchelkin spiral section of the system. The results of numerical simulations were compared with experiments, which had been performed in the same size detonation chamber and turbulent spiral ring section, and with theoretical data on the Chapman–Jouguet detonation parameters.  相似文献   
923.
The RF SRC—Institute of Biomedical Problems, Russian Academy of Sciences, developed Biorisk hardware to study the effects of long-term exposure of dormant forms of various organisms to outer space and used it to complete a series of experiments on the Russian Module (RM) of the International Space Station (ISS).The experiments were performed using prokaryotes (Bacillus bacteria) and eukaryotes (Penicillium, Aspergillus, and Cladosporium fungi), as well as spores, dormant forms of higher plants, insects, lower crustaceans, and vertebrates. The biological samples were housed in two containers that were exposed to outer space for 13 or 18 months. The results of the 18-month experiment showed that, in spite of harsher temperature than in the first study, most specimens remained viable.These experiments provided evidence that not only bacterial and fungal spores but also dormant forms of organisms that reached higher levels of evolutionary development had the capability to survive a long-term exposure to outer space. This observation suggests that they can be transferred on outer walls of space platforms during interplanetary missions.  相似文献   
924.
Over the past 40 years, the Lunar Laser Ranging Program (LLRP) to the Apollo Cube Corner (CCR) Retroreflector Arrays (ALLRRA) [1] has supplied almost all of the significant tests of General Relativity. The LLRP has evaluated the PPN parameters, addressed the possible changes in the gravitational constant and the properties of the self-energy of the gravitational field. In addition, the LLRP has provided significant information on the composition and origin of the moon. This is the only Apollo experiment that is still in operation. Initially the ALLRRAs contributed a negligible fraction of the ranging error budget. Over the decades, the ranging capabilities of the ground stations have improved by more than two orders of magnitude. Now, because of the lunar librations, the existing Apollo retroreflector arrays contribute a significant fraction of the limiting errors in the range measurements.The University of Maryland, as the Principal Investigator for the original Apollo arrays, is now proposing a new approach to the Lunar Laser Array technology [2]. The investigation of this new technology, with Professor Currie as Principal Investigator, is currently being supported by two NASA programs and by the INFN-LNF in Frascati, Italy. Thus after the proposed installation during the next lunar landing, the new arrays will support ranging observations that are a factor 100 more accurate than the current ALLRRAs.The new fundamental cosmological physics and the lunar physics [3] that this new Lunar Laser Ranging Retroreflector Array for the 21st Century (LLRRA-21) can provide will be described. In the design of the new array, there are three major challenges: (1) validate the ability to fabricate a CCR of the required specifications, which is significantly beyond the properties of current CCRs, (2) address the thermal and optical effects of the absorption of solar radiation within the CCR, reduce the transfer of heat from the CCR housing and (3) validate an accurate emplacement technique to install the CCR package on the lunar surface. The latter requires a long-term stable relation between the optical center of the array and the deep regolith, that is, below the thermally driven expansion and contraction of the regolith during the lunar day/night cycle.  相似文献   
925.
In this paper, the results of calculating the processes of two fuel mixture combustion in different proportions are presented. The values of temperature, thermal capacity, specific gas constant and isentropic expansion ratio of combustion products are given. Also shown is the distinction of thermodynamic properties from the additivity law.  相似文献   
926.
针对航电系统集成生产模式下数字化检验工作的深入研究,系统地总结了航电系统集成检验的内容、方法和工作流程。结合某型飞机航电系统集成数字化检验,构建了航电系统集成生产过程中数字化检验标准的框架结构,为实现航电系统集成生产中数字化检验标准和手段的发展提供了宝贵经验。  相似文献   
927.
To complete study [1], the procedure of applying the numerical quadrature method to analyzing the shells of revolution under axisymmetrical loading is presented.  相似文献   
928.
The test results of a conventional combustion chamber with the improved structure are presented. The concentration of toxic substance emissions is reduced as compared with combustion chambers of the similar type.  相似文献   
929.
In this paper, a process of flanging to create thin-walled axisymmetrical shells with the shape of truncated cone is analyzed. Also presented are some dependences that make it possible to determine the relative depth of a formed piece at the given piece-blank thickness ratio.  相似文献   
930.
Geoscience Australia contributed a multi-satellite, multi-year weekly time series to the International DORIS Service combined submission for the construction of International Terrestrial Reference Frame 2008 (ITRF2008). This contributing solution was extended to a study of the capability of DORIS to dynamically estimate the variation in the geocentre location. Two solutions, comprising different constraint configurations of the tracking network, were undertaken. The respective DORIS satellite orbit solutions (SPOT-2, SPOT-4, SPOT-5 and Envisat) were verified and validated by comparison with those produced at the Goddard Space Flight Center (GSFC), DORIS Analysis Centre, for computational consistency and standards. In addition, in the case of Envisat, the trajectories from the GA determined SLR and DORIS orbits were compared. The results for weekly dynamic geocentre estimates from the two constraint configurations were benchmarked against the geometric geocentre estimates from the IDS-2 combined solution. This established that DORIS is capable of determining the dynamic geocentre variation by estimating the degree one spherical harmonic coefficients of the Earth’s gravity potential. It was established that constrained configurations produced similar results for the geocentre location and consequently similar annual amplitudes. For the minimally constrained configuration Greenbelt–Kitab, the mean of the uncertainties of the geocentre location were 2.3, 2.3 and 7.6 mm and RMS of the mean uncertainties were 1.9, 1.2 and 3.5 mm for the X, Y and Z components, respectively. For GA_IDS-2_Datum constrained configuration, the mean of the uncertainties of the geocentre location were 1.7, 1.7 and 6.2 mm and RMS of the mean uncertainties were 0.9, 0.7 and 2.9 mm for the X, Y and Z components, respectively. The mean of the differences of the two DORIS dynamic geocentre solutions with respect to the IDS-2 combination were 1.6, 4.0 and 5.1 mm with an RMS of the mean 21.2, 14.0 and 31.5 mm for the Greenbelt–Kitab configuration and 4.1, 3.9 and 4.3 mm with an RMS 8.1, 9.0 and 28.6 mm for the GA_IDS-2_Datum constraint configuration. The annual amplitudes for each component were estimated to be 5.3, 10.8 and 11.0 mm for the Greenbelt–Kitab configuration and 5.3, 9.3 and 9.4 mm for the GA_IDS-2_Datum constraint configuration. The two DORIS determined dynamic geocentre solutions were compared to the SLR determined dynamic solution (which was determined from the same process of the GA contribution to the ITRF2008 ILRS combination) gave mean differences of 3.3, −4.7 and 2.5 mm with an RMS of 20.7, 17.5 and 28.0 mm for the X, Y and Z components, respectively for the Greenbelt–Kitab configuration and 1.1, −5.4 and 4.4 mm with an RMS of 9.7, 13.3 and 24.9 mm for the GA_IDS-2_Datum configuration. The larger variability is reflected in the respective amplitudes. As a comparison, the annual amplitudes of the SLR determined dynamic geocentre are 0.9, 1.0 and 6.8 mm in the X, Y and Z components. The results from this study indicate that there is potential to achieve precise dynamically determined geocentre from DORIS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号