首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5627篇
  免费   674篇
  国内免费   492篇
航空   3047篇
航天技术   1605篇
综合类   439篇
航天   1702篇
  2024年   15篇
  2023年   52篇
  2022年   116篇
  2021年   176篇
  2020年   135篇
  2019年   130篇
  2018年   203篇
  2017年   198篇
  2016年   179篇
  2015年   177篇
  2014年   258篇
  2013年   274篇
  2012年   282篇
  2011年   358篇
  2010年   369篇
  2009年   405篇
  2008年   350篇
  2007年   265篇
  2006年   211篇
  2005年   223篇
  2004年   158篇
  2003年   180篇
  2002年   204篇
  2001年   175篇
  2000年   139篇
  1999年   146篇
  1998年   120篇
  1997年   124篇
  1996年   103篇
  1995年   121篇
  1994年   88篇
  1993年   73篇
  1992年   88篇
  1991年   47篇
  1990年   42篇
  1989年   57篇
  1988年   37篇
  1987年   24篇
  1986年   23篇
  1985年   69篇
  1984年   56篇
  1983年   44篇
  1982年   45篇
  1981年   67篇
  1980年   35篇
  1979年   18篇
  1978年   20篇
  1976年   18篇
  1975年   15篇
  1974年   14篇
排序方式: 共有6793条查询结果,搜索用时 31 毫秒
71.
Several observations indicate that the cloud deck of the venusian atmosphere may provide a plausible refuge for microbial life. Having originated in a hot proto-ocean or been brought in by meteorites from Earth (or Mars), early life on Venus could have adapted to a dry, acidic atmospheric niche as the warming planet lost its oceans. The greatest obstacle for the survival of any organism in this niche may be high doses of ultraviolet (UV) radiation. Here we make the argument that such an organism may utilize sulfur allotropes present in the venusian atmosphere, particularly S(8), as a UV sunscreen, as an energy-converting pigment, or as a means for converting UV light to lower frequencies that can be used for photosynthesis. Thus, life could exist today in the clouds of Venus.  相似文献   
72.
The gravitational interaction between the Sun and the planetary solar system gives rise to the well-known tidal waves at the planets. The tidal wave originating in the Earth's crust perpetually transforms the microstructure of the Earth's crust leading to a variation of the concentration of natural radioactive gases in the terrestrial air and to changed conditions of their leakage to the Earth's atmosphere. These variations give rise to bursts of thermal and slow neutrons in the vicinity of the Earth's crust, because the radioactive gases are sources of energetic alpha particles that induce neutron production upon the interaction with the nuclei of elements of the Earth's crust and atmosphere. In this work, the idea of neutron production in the ground coat is extended to the other celestial bodies interacting with one another.  相似文献   
73.
The dynamics of the proton energy spectrum during the solar cycle is studied. The spectra were determined by 1–100 MeV particle fluxes measured by different instruments mounted aboard the Earth's IMP-8 satellite for more than one hundred quiet-time intervals in the period between 1974 and 1991. The galactic branch of the spectra (E p > 10 MeV) constructed for every quiet interval was fitted by a power law function, J =CE . The theory predicts that in the 1–100 MeV energy range, where the adiabatic cooling of particles is dominant, = 1, while we have derived a double-peak distribution. The main maximum has the mean value = 1.35. The mean value of the second, much weaker maximum, is = 0.95. Within the main maximum, values are distributed in accordance with the Gaussian law with a standard deviation D/ = 0.12. The substantial difference of from unity requires the elaboration of a new model of modulation processes in the inner heliosphere. The values corresponding to the second maximum show that modulation processes correspond sometimes to theoretical conceptions. It is shown that correlates weakly with parameters A and describing the solar branch of the spectrum (J(E) = AE ). At the same time, a more significant correlation is observed between and the solar activity index, R z, the counting rate of the Deep River neutron monitor, and the energy value in the minimum of the energy spectrum flux, E min.  相似文献   
74.
The possibility of using the mode of single-axis solar orientation is considered for a satellite placed into a nearly circular orbit with an altitude of 900 km and bearing a solar sail. The satellite (together with the sail) has an axisymmetric structure, its symmetry axis being the principal central axis of the maximum moment of inertia. The center of the sail pressure lies on this axis and is displaced with respect to the satellite's center of mass. The symmetry axis of the satellite is set to the Sun so that its center of mass would be located between the Sun and the pressure center and would rotate around this axis with an angular velocity of a few degrees per second. The satellite's axis of symmetry makes a slow precession under the action of the gravitational moment and the moment of light pressure forces. Though the maximum magnitudes of these moments are comparable, the moment of the light pressure forces dominates and controls the precession in such a way that the symmetry axis orientation to the Sun remains unchanged.  相似文献   
75.
Bacterial spores have been used as model systems for studying the theory of interplanetary transport of life by natural processes such as asteroidal or cometary impacts (i.e., lithopanspermia). Because current spallation theory predicts that near-surface rocks are ideal candidates for planetary ejection and surface basalts are widely distributed throughout the rocky planets, we isolated spore-forming bacteria from the interior of near-subsurface basalt rocks collected in the Sonoran desert near Tucson, Arizona. Spores were found to inhabit basalt at very low concentrations (相似文献   
76.
During previous long-term manned missions, more than 100 species of microorganisms have been identified on surfaces of materials (bacteria and fungi). Among them were potentially pathogenic ones (saprophytes) which are capable of active growth on artificial substrates, as well as technophilic bacteria and fungi causing damages (destruction and degradation) to various materials (metals and polymers), resulting in failures and disruptions in the functioning of equipment and hardware.

Aboard a space vehicle some microclimatic parameters are optimal for microorganism growth: the atmospheric fluid condensate with its specific composition, chemical and/or antropogenic contaminants (human metobolic products, etc.) all are stimulating factors for the development of bacteria and mould fungi on materials of the interior and equipment of an orbital station during its operational phase(s).

Especially Russian long-term missions (SALJUT, MIR) have demonstrated that uncontrolled interactions of microorganisms with materials will ultimately lead to the appearence of technological and medical risks, significantly influencing safety and reliability characteristics of individual as well as whole systems and/ or subsystems.

For a first conclusion, it could be summarized, that countermeasures and anti-strategies focussing on Microbial Contamination Management (MCM) for the International Space Station (ISS, next long-term manned mission) at least require a new materials test approach.

Our respective concept includes a combined age-ing/biocorrosion test sequence. It is represented here, as well as current status of MCM program, e.g. continuous monitoring (microbiological analyses), long-term disinfection, frequent cleaning methods, mathematical modeling of ISS, etc.  相似文献   

77.
航天飞行器防热部件烧蚀行为的数值模拟   总被引:2,自引:0,他引:2  
对航天飞行器防热部件在氧-煤油发动机火焰喷吹下的烧蚀行为进行了有限元数值模拟。利用“杀死”单元的方法建立防热部件瞬态温度场的有限元模型,实现了烧蚀边界的退缩,从而完成了对烧蚀尺寸变化的定量描述。烧蚀开始于4.59s,到12s时线烧蚀量为1.47mm。计算结果与试验的实测结果一致。  相似文献   
78.
对机动再入飞行器弧段的复合制导方案进行了研究,首先提出了通过高低空复合制导控制再入飞行器的终端速度和弹道倾角的思路;然后分别给出了高空最优制导律和大气厚再入最优制导律;最后对此复合制导方案进行了数字仿真。仿真结果表明此方案在理论上是可行的。  相似文献   
79.
The data of measuring the plasma density in the topside ionosphere for the South-Atlantic geomagnetic anomaly region are presented. It is shown that irregular plasma structures with a wide spectrum of irregularity scale (including large-scale structures with a dimension of order of some hundred kilometers) can be generated in the fields of electrostatic turbulence in inhomogeneous plasma.  相似文献   
80.
Earth's subsurface offers one of the best possible sites to search for microbial life and the characteristic lithologies that life leaves behind. The subterrain may be equally valuable for astrobiology. Where surface conditions are particularly hostile, like on Mars, the subsurface may offer the only habitat for extant lifeforms and access to recognizable biosignatures. We have identified numerous unequivocally biogenic macroscopic, microscopic, and chemical/geochemical cave biosignatures. However, to be especially useful for astrobiology, we are looking for suites of characteristics. Ideally, "biosignature suites" should be both macroscopically and microscopically detectable, independently verifiable by nonmorphological means, and as independent as possible of specific details of life chemistries--demanding (and sometimes conflicting) criteria. Working in fragile, legally protected environments, we developed noninvasive and minimal impact techniques for life and biosignature detection/characterization analogous to Planetary Protection Protocols. Our difficult field conditions have shared limitations common to extraterrestrial robotic and human missions. Thus, the cave/subsurface astrobiology model addresses the most important goals from both scientific and operational points of view. We present details of cave biosignature suites involving manganese and iron oxides, calcite, and sulfur minerals. Suites include morphological fossils, mineral-coated filaments, living microbial mats and preserved biofabrics, 13C and 34S values consistent with microbial metabolism, genetic data, unusual elemental abundances and ratios, and crystallographic mineral forms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号