首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   0篇
航空   17篇
航天技术   23篇
航天   3篇
  2021年   3篇
  2019年   1篇
  2015年   1篇
  2014年   4篇
  2013年   1篇
  2012年   3篇
  2011年   3篇
  2010年   3篇
  2009年   6篇
  2008年   1篇
  2006年   3篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1984年   1篇
排序方式: 共有43条查询结果,搜索用时 0 毫秒
21.
The imaging flash lidar has been considered as a promising sensor for the future space missions such as autonomous safe landing, spacecraft rendezvous and docking due to its ability to provide a full 3D scene with a single or multiple laser pulses. The linear-mode flash lidar has been developed and demonstrated for an autonomous safe landing on the Moon in order to provide an accurate distance measurement to the landing site and its 3D image. Yet, the Geiger-mode flash lidar has also been recognized as an emerging technology for the space missions because it is highly sensitive even to a single photon and provides the very accurate timing of photon arrival. In this study, the performance of the Geiger-mode flash lidar is simulated in the approach phase and evaluated for the autonomous landing on the Moon. Furthermore, a new statistical signal processing algorithm is proposed to remove the noise counts in order to obtain the 3D image from a sequence of laser pulses in the situation of the fast moving spacecraft. The algorithm is shown to be effective for the autonomous landing due to its ability to remove noise events under the condition of low signal-to-noise ratio and improve ranging accuracy.  相似文献   
22.
Korea is planning a series of lunar space programs in 2020 starting with a lunar orbiter and a lander with a rover. Compared to other countries, Korea has a relatively brief history in space and planetary sciences. With the expected Korean missions on the near-term horizon and the relatively few Korean planetary scientists, Korea Institute of Geoscience and Mineral Resources (KIGAM) has established a new planetary research group focusing on development of prospective lunar instruments, analysis of the publicly available planetary data of the Moon, organizing nationwide planetary workshops, and initiating planetary educational programs with academic institutions. Korea has also initiated its own rocket development program, which could acquire a rocket-launch capability toward the Korean lunar mission. For the prospective Korea’s lunar science program, feasibility studies for some candidate science payloads have been started since 2010 for an orbiter and a lander. The concept design of each candidate instrument has been accomplished in 2012. It is expected that the development of science payloads may start by 2014 as Phase A. Not only developing hardware required for the lunar mission but also educational activities for young students are high priorities for Korea. The new plan of the Korean lunar mission can be successfully accomplished with international cooperative outreach programs in conjunction with internationally accessible planetary data system (PDS). This paper introduces the KIGAM’s international cooperative planetary research and educational programs and also summarizes other nationwide new developments for Korean lunar research projects at Kyung Hee University and Hanyang University.  相似文献   
23.
Recently, as a satellite mission becomes complicated, it has been required to generate the schedule of satellite antenna movements automatically without relying upon operator’s ad hoc knowledge. To generate the satellite antenna schedule autonomously, this paper first addresses geometrical problems associated with the antenna scheduling and mission planning problems that can be formulated from satellite navigation and antenna orientation information. Then, based on the solutions of the geometrical problems, a set of antenna azimuth and elevation angles that enables the antenna to point towards the desired ground station is obtained systematically. Using the computed azimuth and elevation angles, the satellite tracking profile (TP) is generated, and to validate it, TP validation algorithms are developed.  相似文献   
24.
In this study, genetic resampling (GRS) approach is utilized for precise orbit determination (POD) using the batch filter based on particle filtering (PF). Two genetic operations, which are arithmetic crossover and residual mutation, are used for GRS of the batch filter based on PF (PF batch filter). For POD, Laser-ranging Precise Orbit Determination System (LPODS) and satellite laser ranging (SLR) observations of the CHAMP satellite are used. Monte Carlo trials for POD are performed by one hundred times. The characteristics of the POD results by PF batch filter with GRS are compared with those of a PF batch filter with minimum residual resampling (MRRS). The post-fit residual, 3D error by external orbit comparison, and POD repeatability are analyzed for orbit quality assessments. The POD results are externally checked by NASA JPL’s orbits using totally different software, measurements, and techniques. For post-fit residuals and 3D errors, both MRRS and GRS give accurate estimation results whose mean root mean square (RMS) values are at a level of 5 cm and 10–13 cm, respectively. The mean radial orbit errors of both methods are at a level of 5 cm. For POD repeatability represented as the standard deviations of post-fit residuals and 3D errors by repetitive PODs, however, GRS yields 25% and 13% more robust estimation results than MRRS for post-fit residual and 3D error, respectively. This study shows that PF batch filter with GRS approach using genetic operations is superior to PF batch filter with MRRS in terms of robustness in POD with SLR observations.  相似文献   
25.
For the development of a telescope that is capable of precisely tracking satellites and high-speed operation such as satellite laser ranging, a special method of telescope operation is required. This study aims to propose a new telescope operation method and system configuration for the independent development of a mount and an operation system which includes the host computer. Considering that the tracking of a satellite is performed in real time, communication and synchronization between the two independent subsystems are important. Therefore, this study applied the concept of time synchronization, which is used in various fields of industry, to the communication between the command computer and the mount. In this case, communication delays do not need to be considered in general, and it is possible to cope with data loss. Above all, when the mount is replaced in the future, only the general communication interface needs to be modified, and thus, it is not limited by replacement in terms of the overall system management. The performance of the telescope operation method developed in this study was verified by applying the method to the first mobile SLR system in Korea. This study is significant in that it proposed a new operation method and system configuration, to which the concept of time synchronization was applied, for the observation system that requires an optical telescope.  相似文献   
26.
The current paper presents optimal reconfigurations and formation-keeping for formation flying satellites. The state-dependent Riccati equation (SDRE) technique is utilized as a non-linear controller for both the reconfiguration problem and formation-keeping problem. For the SDRE controller, a state-dependent coefficient (SDC) form is formulated to include non-linearities in the relative dynamics and J2 orbital perturbation. The Taylor series and a transformation matrix are used to establish the SDC form. Optimal reconfiguration trajectories that minimize energy in satellite formation flying are obtained by the SDRE controller and compared with those obtained from a linear quadratic regulator (LQR) and a linear parameter varying (LPV) control method. It is illustrated that the SDRE non-linear controller of the current study obtains relocation accuracy of less than 0.1% of formation base-line length, while the LQR controller and LPV controller yield relatively large relocation errors. The formation-keeping controller developed using the SDRE technique in the current study also provides robustness under severe orbital perturbations.  相似文献   
27.
Recent developments have seen a trend towards larger constellations of spacecraft, with some proposals featuring constellations of more than 10.000 satellites. While similar concepts for large constellations already existed in the past, traditional satellite deployments hardly ever feature groups of more than 100 satellites. This trend towards considerably larger satellite numbers originates from non-traditional design and operations of spacecraft by non-traditional space companies. The evolution in the space sector, precipitated by new players, is often referred to as “Space 4.0” or “New Space”. It necessitates a rethinking of the way satellites and satellite constellations are planned, designed, and operated. New operational paradigms are needed to enable automatic, optimal task definition, and scheduling in a holistic approach.This is the second of two companion papers that investigate the operations of distributed satellite systems. This second article investigates the classification of distributed satellite systems and evaluates commercial tools for automated spacecraft operations, whereas the first article performed a survey of conventional and “new space”operations of spacecraft constellations.Classification metrics for constellations are derived and evaluated with respect to their informative value concerning the operation, the automation, and the scalability of the constellation. The proposed classification system is applied to the Dove and RapidEye constellation and allows for a comparison between the presented automation approaches. Commercial tools for automated spacecraft operations are evaluated for several mission task elements, such as orbit control, orbit maintenance, and collision avoidance. Subsequently, the trends, benefits, and standardization needs for operational automation are identified.  相似文献   
28.
A new adaptive nonlinear guidance law is proposed here. The fourth order state equation for integrated guidance and control loop is formulated taking into consideration the target uncertainties and control loop dynamics. The state equation is further changed into the normal form by nonlinear coordinate transformation. Using the normal form of state equation, an adaptive nonlinear guidance law is proposed to compensate for the uncertainties in both target acceleration and control loop dynamics. The proposed law adopts the sliding mode control approach with adaptation for unknown bound of uncertainties. The present approach can effectively solve the existing guidance problem against target maneuver and the limited performance of control loop. We have provided the stability analyses and performed simulations comparing favorably our approach to the state of the art.  相似文献   
29.
This paper proposes a procedure for managing the risk of reentering space objects and risk assessment methodologies used for the process. The proposed procedure comprises three phases encompassing the whole reentry stages of space objects. Mathematical models for assessing the impact risk of the reentering space objects by utilizing the information available during different risk management phases and the recommended risk analysis results for public communication are presented. The concept of the conditional casualty expectation is proposed as the metric representing the reentry risk and the method to compute its profile is introduced. A case study on the risk management procedure with the dataset on an actual reentry event is conducted to demonstrate the efficacy of the proposed procedure.  相似文献   
30.
A robust adaptive control scheme is proposed that can be applied to a practical autopilot design for feedback-linearized skid-to-turn (STT) missiles with aerodynamic uncertainties. The approach is to add a robust adaptive controller to a feedback-linearizing controller in order to reduce the influence of the aerodynamic uncertainties. The proposed robust adaptive control scheme is based on a sliding mode control technique with an adaptive law for estimating the unknown upper bounds of uncertain parameters. A feature of the proposed scheme is that missile systems with aerodynamic uncertainties can be controlled effectively over a wide operating range of flight conditions. It is shown, using Lyapunov stability theory, that the proposed scheme can give sufficient tracking capability and stability for a feedback-linearized STT missile with aerodynamic uncertainties. The six-degree-of-freedom nonlinear simulation results also show that good performance for several uncertainty models and engagement scenarios can be achieved by the proposed scheme in practical night conditions  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号