首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   0篇
航空   1篇
航天技术   5篇
航天   27篇
  2021年   1篇
  2018年   2篇
  2017年   4篇
  2013年   1篇
  2011年   1篇
  2010年   2篇
  2009年   4篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2003年   2篇
  2002年   5篇
  2001年   1篇
  2000年   2篇
  1994年   1篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
21.
22.
Radio bursts in the frequency range of 100–1500 kHz, recorded in 1997–2000 on the INTERBALL-1 satellite during the solar flares preceding the strong geomagnetic storms with D st < ?100 nT, are analyzed in this paper. The observed long-wave III-type radio bursts of solar origin at frequencies of 1460 and 780 kHz were characterized by large values of the flux S f = 10?15 ?10?17 W/m2 Hz and duration longer than 10 min. The rapid frequency drift of a modulated radio burst continued up to a frequency of 250 kHz, which testified that the exciting agent (a beam of energetic electrons) propagated from the Sun to the Earth. All such flares were characterized by the appearance of halo coronal mass ejections, observed by the LASCO/SOHO, and by the presence of a southward Bz-component of the IMF, measured on the ACE and WIND spacecraft. In addition, shortly after radio bursts, the INTERBALL-1 satellite has recorded the fluxes of energetic electrons with E > 40 keV.  相似文献   
23.
Multi-spacecraft tracing of the high latitude magnetopause (MP) and boundary layers and Interball-1 statistics indicate that:
1. (a) The turbulent boundary layer (TBL) is a persistent feature in the region of the cusp and ‘sash’, a noticeable part of the disturbances weakly depends on the interplanetary magnetic field By component; TBL is a major site for magnetosheath (MSH) plasma penetration inside the magnetosphere through percolation and local reconnection.
2. (b) The TBL disturbances are mainly inherent with the characteristic kinked double-slope spectra and, most probably, 3-wave cascading. The bi-spectral phase coupling indicates self-organization of the TBL as the entire region with features of the non-equilibrium multi-scale and multi-phase system in the near-critical state.
3. (c) We've found the different outer cusp topologies in summer/winter periods: the summer cusp throat is open for the decelerated MSH flows, the winter one is closed by the distant MP with a large-scale (several Re) diamagnetic ‘plasma ball’ inside the MP; the ‘ball’ is filled from MSH through patchy merging rather than large-scale reconnection.
4. (d) A mechanism for the energy release and mass inflow is the local TBL reconnection, which operates at the larger scales for the average anti-parallel fields and at the smaller scales for the nonlinear fluctuating fields; the latter is operative throughout the TBL. The remote from TBL anti-parallel reconnection seems to happen independently.

References

Chen, J., Fritz, T.A., Sheldon, R.B., Spencer, H.E., Spjeldvik, W.N. et al., 1997. Temporary confined population in the polar cap during the August 27, 1996 geomagnetic field distortion period. Geophys. Res. Lett. 24, p. 1447. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus (51)
Chen, J. and Fritz, T.A., 1998. Correlation of cusp MeV helium with turbulent ULF power spectra and its implications. Geophys. Res. Lett. 25, p. 4113. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus (34)
Consolini, G. and Lui, A.T., 2000. Symmetry breaking and nonlinear wave-wave interaction in current disruption: possible evidence for a phase transition. In: Magnetospheric Current SystemsGeophysical Monograph 118, American Geophysical Union, Washington D.C., pp. 395–401.
Dubinin, E., Skalsky, A., Song, P., Savin, S., Kozyra, J. et al., 2001. Polar-Interball coordinated observations of plasma characteristics in the region of the northern and southern distant cusps. J. Geophys. Res. accepted .
Fedorov, A., Dubinin, E., Song, P., Budnick, E., Larson, P. and Sauvaud, J.A., 2000. Characteristics of the exterior cusp for steady southward IMF: Interball observations. J. Geophys. Res. 105, pp. 15,945–15,957.
Fritz, T.A., Chen, J. and Sheldon, R.B., 2000. The role of the cusp as a source for magnetospheric particles: a new paradigm?. Adv. Space Res. 25, pp. 1445–1457. Article | PDF (871 K) | View Record in Scopus | Cited By in Scopus (18)
Haerendel, G. and Paschmann, G., 1975. Entry of solar wind plasma into the magnetosphere. In: Hultqvist, B. and Stenflo, L., Editors, 1975. Physics of the Hot Plasma in the Magnetosphere, Plenum, NY, p. 23.
Haerendel, G., 1978. Microscopic plasma processes related to reconnection. J. Atmos. Terr. Phys. 40, pp. 343–353. Abstract | PDF (1141 K) | View Record in Scopus | Cited By in Scopus (27)
Klimov, S. et al., 1997. ASPI Experiment: Measurements of Fields and Waves Onboard the INTERBALL-1 Spacecraft. Ann. Geophys. 15, pp. 514–527. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus (88)
Kuznetsova, M.M. and Zelenyi, L.M., 1990. The theory of FTE: Stochastic percolation model. In: Russell, C.T., Priest, E.R. and Lee, L.C., Editors, 1990. Physics of Magnetic Flux RopesAmerican Geophysical Union, pp. 473–488.
La Belle-Hamer, A.L., Otto, A. and Lee, L.C., 1995. Magnetic reconnection in the presence of sheared flow and density asymmetry: application to the Earth's magnetopause. J. Geophys. Res. 100, pp. 11,875–11,889.
Lagoutte, D., Lefeuvre, F. and Hanasz, J., 1989. Application of bi-coherence analysis in study of wave interactions in space plasma. J. Geophys. Res. 94, p. 435. Full Text via CrossRef
Maynard, N.C., Savin, S., Erickson, G.A., Kawano, H. et al., 2001. Observations of fluxes of magnetosheath origin by Polar and Interball at high latitudes behind the terminator-relationships to the magnetospheric “sash”. J. Geophys. Res. 104, pp. 6097–6122. Full Text via CrossRef
Merka, J., Safrankova, J., Nemecek, Z., Fedorov, A., Borodkova, N., Savin, S. and Skalsky, A., 2000. High altitude cusp: Interball observations. Adv. Space Res. 25, pp. 1425–1434. Article | PDF (915 K) | View Record in Scopus | Cited By in Scopus (22)
Onsager, T.G., Scudder, J., Lockwood, M. and Russell, C.T., 2001. Reconnection at the high latitude magnetopause during northward IMF conditions. J. Geophys. Res. 106, pp. 25,467–25,488.
Romanov, V., Savin, S., Klimov, S., Romanov, S., Yermolaev, Yu., Blecki, J. and Wronowski, R., 1999. Magnetic turbulence at the magnetopause: plasma penetration. J. Tech. Phys. (Poland) 40 1, pp. 329–332.
Safrankova, J., Nemecek, Z., Prech, L., Sauvaud, J.-A. and Wing, S., 2001. The structure of the magnetopause layers at magnetospheric flanks. In: Proceedings of COSPAR/ESA, Colloquium.
Sagdeev, R.Z. and Galeev, A.A., 1969. Nonlinear plasma theory. In: , Benjamin, White Plains, N.Y., p. 6.
Sandahl, I., Popielavska, B., Budnick, E.Yu., Fedorov, A., Savin, S., Safrankova, J. and Nemecek, Z., 2000. The cusp as seen from Interball. In: Proceedings of Cluster II Workshop. Multiscale/Multipoint Plasma MeasurementsESA/SP-499, Imperial College, London, pp. 39–45.
Savin, S.P., Romanov, S.A., Fedorov, A.O., Zelenyi, L., Klimov, S.I. et al., 1998. The cusp/magnetosheath interface on May 29, 1996: Interball-1 and Polar observations. Geoph. Res. Lett. 25, pp. 2963–2966. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus (23)
Savin, S.P., Borodkova, N.L., Budnik, E.Yu., Fedorov, A.O., Klimov, S.I. et al., 1998. Interball tail probe measurements in outer cusp and boundary layers. In: Horwitz, J.L., Gallagher, D.L. and Peterson, W.K., Editors, 1998. Geospace Mass and Energy Flow: Results from the International Solar-Terrestrial Physics ProgramGeophysical Monograph 104, American Geophysical Union, Washington, D.C., pp. 25–44.
Savin, S., Zelenyi, L., Budnik, L., Borodkova, N., Fedorov, A. et al., 1998. Manifestations of Boundary Layer Dynamics in Substrom Activity. Multi Spacecraft Study. In: Kokubun, S. and Kamide, Y., Editors, 1998. SUBSTORM-4, ‘Conf. on Substorms-4’Lake Hamana, Japan: March 9–13, 1998, , Terra Scientific Publ. Co., Tokyo, pp. 125–130.
Savin, S., Budnik, E., Nozdrachev, M., Romanov, V. et al., 1999. On the plasma turbulence and transport at the polar cusp outer border. Chekhoslovak J. Phys. 49 4a, pp. 679–693. View Record in Scopus | Cited By in Scopus (15)
Savin, S., Skalsky, A., Romanov, S., Budnick, E., Borodkova, N., Zelenyi, L. et al., 2000. Outer cusp boundary layer: summer/winter assymetry. In: Proceedings of Symposium ‘From solar corona through interplanetary space into magnetosphere and ionosphere’, Kyiv University, Kyiv, pp. 229–232.
Savin, S., Blecki, J., Pissarenko, N., Lutsenko, V., Kirpichev, I. et al., 2002. Accelerated particles from turbulent boundary layer. In: Proc. of Interball/COSPAR Colloquium ‘Acceleration And Heating In The Magnetosphere’ in press .
Savin, S., Maynard, N., Sandahl, I., Kawano, H., Russell, C.T., Romanov, S., Zelenyi, L. et al., 2002. Magnetosheath/Cusp Interface. Ann. Geophys. submitted .
Siscoe, G.L., Erickson, G.M., Sonnerup, B.U.Ö., Maynard, N.C., Siebert, K.D., Weimer, D.R. and White, W.W., 2001. Magnetospheric sash dependence on IMF direction. Geophys. Res. Lett. in press .
Spreiter, J.R. and Briggs, B.R., 1962. Theoretical determination of the form of the boundary of the solar corpuscular stream produced by interaction with the magnetic dipole field of the Earth. J. Geophys. Res. 67, pp. 37–51. Full Text via CrossRef
Zelenyi, L.M. and Milovanov, A.V., 1998. Multiscale magnetic structure of the distant tail: self-consistent fractal approach. In: New Perspectives on the Earth MagnetotailGeophys. Monograph 105, AGU, Washington DC, pp. 321–338.
  相似文献   
24.
The properties of different solar wind streams depend on the large scale structure of the coronal magnetic field. We present average values and distributions of bulk parameters (density, velocity, temperature, mass flux, momentum, and kinetic and thermal energy, ratio of thermal and magnetic pressure, as well as the helium abundance) as observed on board the Prognoz 7 satellite in different types of the solar wind streams. Maximum mass flux is recorded in the streams emanating from the coronal streamers while maximum thermal and kinetic energy fluxes are observed in the streams from the coronal holes. The momentum fluxes are equal in both types of streams. The maximum ratio of thermal and magnetic pressure is observed in heliospheric current sheet. The helium abundance in streams from coronal holes is higher than in streams from streamers, and its dependences on density and mass flux are different in different types of the streams. Also, the dynamics of -particle velocity and temperature relative to protons in streams from coronal holes and streamers is discussed.  相似文献   
25.
This work is a continuation of investigation [1] of the behavior of the solar wind’s and interplanetary magnetic field’s parameters near the onset of geomagnetic storms for various types of solar wind streams. The data of the OMNI base for the 1976–2000 period are used in the analysis. The types of solar wind streams were determined, and the times of beginning (onsets) of magnetic storms were distributed in solar wind types as follows: CIR (121 storms), Sheath (22 storms), MC (113 storms), and “uncertain type” (367 storms). The growth of variations (hourly standard deviations) of the density and IMF magnitude was observed 5–10 hours before the onset only in the Sheath. For the CIR-, Sheath-and MC-induced storms the dependence between the minimum of the IMF B z-component and the minimum of the D st -index, as well as the dependence between the electric field E y of solar wind and the minimum of the D st -index are steeper than those for the “uncertain” solar wind type. The steepest D st vs. B z dependence is observed in the Sheath, and the steepest D st vs. E y dependence is observed in the MC.  相似文献   
26.
The variations in the deviation of the observed position of the magnetosphere boundary from its mean position predicted by the Shue at al., 1997 (Sh97) model [7] are studied as a function of the substorm activity level (the AE-index value) and magnetic storm intensity (the value of the corrected D st * index). The results obtained make it possible to state that the amplitude of motion of the magnetospheric boundary on the dayside and in the low-latitude tail is small. It is likely that the position of the boundary is either independent of the AE and D st * indices or this dependence is weak. At the same time, the boundary of the high-latitude tail shifts inward on the average by 1.5R E with an increase of the AE-index in the case of absence of magnetic storms (contraction of the magnetospheric tail). On the contrary, in the presence of magnetic storms, this boundary shifts outward by up to 3R E with an increase of the AE-index (inflation of the magnetospheric tail). It is also shown that the boundary of the high-latitude tail moves outward with an increase of the D st * index, both at low substorm activity and in periods of high substorm activity. The amplitude of the outward motion of the high-latitude tail of the magnetosphere is by a factor of two higher for moderate magnetic storms with strong substorms than for moderate magnetic storms with weak substorms.  相似文献   
27.
28.
We have considered the possible causes of discrepancies between the predicted and observed at 1 AU parameters of the recurrent solar wind (SW) streams in the maximum of the 24th solar cycle. These discrepancies have been observed in both the SW velocity profile and the SW stream arrival time, as well as in the absence of the expected high-speed SW stream. The degree of discrepancy depends on the model used for the SW prediction; however, in some cases, different prediction methods provide a similar discrepancy with the observed SW parameters at 1 AU. For several cases, we show that the probable cause of the discrepancies can be a deflection of the high-speed SW stream from the radial direction due to the interaction with the transient SW streams at certain configuration of the magnetic fields of high-speed and transient SW sources in the solar corona.  相似文献   
29.
The theory of a plasma sheet with medium scale developed turbulence predicts a value for the plasma sheet diffusion coefficient in the Z direction. Its value becomes very near to the diffusion coefficient calculated from the assumption of isotropic turbulence on the basis of ISEE-2 velocity fluctuations in the X and Y directions. INTERBALL/Tail CORALL bulk velocity measurements make it possible to determine velocity fluctuations in the Z direction and calculate the diffusion coefficient in this Z direction. It is shown that INTERBALL/Tail observations are in very good agreement with theory predictions.  相似文献   
30.
Characteristics of low latitude boundary layer (LLBL) of the Earth’s magnetosphere are investigated using data of Interball/Tail probe observations. The role of different processes of LLBL formation is discussed. The high level of magnetosheath turbulence is taken into account. It is shown that the turbulent nature of magnetic field and plasma fluctuations in the magnetosheath is one of the main factors determining the structure of LLBL. The results of Interball/Tail probe observations of the event 9 March 1996 are analyzed. The thickness of LLBL is determined for the number of cases. The change of LLBL thickness under the influence of the changes of solar wind parameters is investigated. It is shown that variability of solar wind conditions can be the important factor controlling LLBL thickness. Results of observations are compared with the theory which explains the value of LLBL thickness as the result of plasma transport inside the magnetosphere. It is shown that the theory gives the qualitative explanation of the observed dependence of LLBL thickness on solar wind parameters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号