首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3401篇
  免费   759篇
  国内免费   775篇
航空   2354篇
航天技术   943篇
综合类   493篇
航天   1145篇
  2024年   19篇
  2023年   41篇
  2022年   94篇
  2021年   133篇
  2020年   132篇
  2019年   88篇
  2018年   108篇
  2017年   118篇
  2016年   110篇
  2015年   147篇
  2014年   229篇
  2013年   231篇
  2012年   254篇
  2011年   285篇
  2010年   304篇
  2009年   264篇
  2008年   264篇
  2007年   209篇
  2006年   186篇
  2005年   136篇
  2004年   106篇
  2003年   91篇
  2002年   90篇
  2001年   94篇
  2000年   127篇
  1999年   140篇
  1998年   175篇
  1997年   123篇
  1996年   108篇
  1995年   85篇
  1994年   78篇
  1993年   76篇
  1992年   61篇
  1991年   54篇
  1990年   39篇
  1989年   31篇
  1988年   43篇
  1987年   29篇
  1986年   13篇
  1985年   5篇
  1984年   5篇
  1983年   5篇
  1982年   3篇
  1965年   2篇
排序方式: 共有4935条查询结果,搜索用时 734 毫秒
321.
颗粒冲刷条件下硅橡胶绝热材料烧蚀特性实验研究   总被引:1,自引:3,他引:1       下载免费PDF全文
刘洋  关轶文  吴育飞  李江  陈剑  王敏 《推进技术》2017,38(1):227-234
为了研究颗粒冲刷条件下硅橡胶绝热材料的烧蚀规律和特性,采用一种颗粒冲刷状态可调的实验发动机,以添加有短切碳纤维和高硅氧玻璃纤维的硅橡胶为研究对象,开展了颗粒聚集浓度范围为34.5~75.3kg/m3,冲刷速度为9.4~35.9m/s,角度为19.3°~55.5°条件下的13次热试车实验,获得了颗粒冲刷状态参数和炭化烧蚀率之间的宏观影响规律,通过对试验后试件的宏观形貌和微观结构特征进行分析,初步探讨了硅橡胶绝热材料的烧蚀机理。研究结果表明:(1)和EPDM绝热材料的烧蚀规律和特性不同,实验条件下硅橡胶炭化层更厚且致密,硅橡胶材料的最大烧蚀率随颗粒聚集浓度变化较为敏感,当超过50kg/m3临界浓度值时,烧蚀率随浓度的增加而急剧增大。最大烧蚀率随颗粒冲刷速度增加而增大,并呈现出先急剧增加后缓慢增加的趋势;(2)在颗粒冲刷速度较低条件下,硅橡胶材料烧蚀率要高于EPDM的,在颗粒冲刷速度较高条件下,硅橡胶耐冲刷性能要略优于EPDM的;(3)硅橡胶的热分解温度区间约为623~989K,在烧蚀过程中,高硅氧纤维和硅橡胶分解产生的Si O2会渗透到炭化层骨架中,进一步和C反应形成Si C,从而使炭化层致密化,具备耐冲刷特性;(4)通过分析烧蚀形貌和微观特征,初步提出了三层一面(基体层,热解层,炭化层,冲刷面)的烧蚀物理模型。  相似文献   
322.
根据碳纤维表面形貌与两种环氧树脂黏度特性,确定复合材料合适的固化压力。针对两种环氧树脂的黏度差异,比较膨胀压力设计及固化工艺优化方法。结果表明:高黏度环氧树脂体系的软模膨胀成型工艺适应性更好,固化周期缩短13. 6%,凝胶压力设计温度(135±5)℃能够保证产品内部质量,固化温度(170±5)℃降低产品变形风险,支撑梁构件缺陷比例0. 5%,满足航天结构复合材料质量控制新常态的要求。  相似文献   
323.
某高压压气机第4 级转子叶片断裂分析   总被引:1,自引:0,他引:1       下载免费PDF全文
针对某燃气轮机在试车过程中高压压气机第4级转子叶片的断裂失效故障,通过外观检查、断口分析、表面检查、成分分析、组织检查、硬度测试和模拟试验等手段,对断裂性质和产生原因进行分析。结果表明:故障叶片为疲劳断裂。在试车过程中叶尖与机匣涂层严重碰摩,使叶片承受非正常冲击载荷是促使故障叶片产生疲劳裂纹的主要原因,叶片原始加工刀痕和喷丸质量差起促进作用。提出提高叶片加工质量,控制合理的叶片与机匣涂层之间的间隙的改进建议,以避免类似故障的发生。  相似文献   
324.
在飞机显示器的水平导航区域上需要为飞行员实时显示最新的航线信息,航线中的每个航路点均有不同的转弯方式,目前国内正在研发的飞机采用旁切转弯和飞越转弯两种方式,若错过了预计的转弯起始点,则需要重新进行航线解算,这被定义为超调转弯,给出三类转弯航线的解算方法。  相似文献   
325.
根据适航规范针对常见的两种外来异物:冰雹与冰块进行本体特性研究,确定两种外来异物的几何、质量以及初始姿态特性。耦合计算流体力学(CFD)以及六自由度方法(6DOF),开展涡桨发动机进气道以及旁通道中的异物运动排除特性数值模拟,分析其气动特性以及运动轨迹。针对运动中可能存在的碰撞现象,进一步联合LS-DYNA软件进行仿真分析,建立合理有效的涡桨发动机进气道外来异物排除数值模拟方法。以某型涡桨发动机为例,两种异物的计算结果表明,一旦异物与壁面发生碰撞,碎裂成若干很小的碎块,能量损失,对发动机威胁较小,无论是进入主发动机或者旁通道,均可认为排除。但是,由于下壁面结冰区的冰块容易直接进入主发动机,有可能造成严重影响,需要重点关注。  相似文献   
326.
风电场的大规模接入对电网暂态稳定性造成的影响不容忽视。以含双馈风电机组的扩展两机系统为例,建立了双馈风机等值模型,将两机系统等值成单机无穷大系统,依据等面积法则详细推导了风电接入后系统极限切除角的解析式,进而定量分析了极限切除角随风电比例、风机并网位置、故障位置和负荷接入位置等4个影响因素的变化趋势,总结出4种影响因素对暂态功角稳定性的影响规律。在BPA和FASTEST中分别建立含双馈风机的扩展双机系统的仿真模型,对理论分析工作的正确性进行了仿真验证。  相似文献   
327.
随着物联网技术的发展,如何将物联网技术与非侵入式电力设备运行状态监测技术相结合成为当前研究热点之一。为了探索基于物联网技术的电气设备运行状态监测新模式,以感应电机定子绕组温度的非侵入式在线监测为出发点,首先提出了一种基于自适应法和最小二乘法的电机定子绕组温度辨识方法,并结合当前物联网技术的发展,设计了一种基于全过程监督技术的感应电机全寿命周期监督定子温度监测系统。以1台5.5 kW感应电机为例进行试验验证,结果表明该系统具有较强的鲁棒性。所提出的理念和技术可以为其他大型电力设备的状态监测提供重要参考和技术支撑。  相似文献   
328.
张瑶佳  王莉  尹振东  高杨  王帮亭 《航空学报》2019,40(1):522404-522404
由于飞机内部布线空间有限、电弧故障存在发生时间地点随机以及特征不明显等问题,导致检测困难。本文基于航空270 V高压直流(HVDC)系统开展直流串行电弧故障特征提取方法研究,采用希尔伯特黄变换(HHT)提取电弧电流交流分量的时域和频域特征量。选择HHT的固有模态函数IMF5瞬时幅值的峰峰值和标准差作为识别电弧故障的时域特征,与原始信号中提取的时域特征量对比,正常和电弧特征量的区分度更大;选择HHT的固有模态函数IMF1+IMF2、一定频带范围内的瞬时幅值计算得到的谐波功率和作为区分正常和电弧情况的频域特征量。与常用的快速傅里叶变换(FFT)方法相比,HHT三维时频谱能够反映信号的局部特征,HHT方法计算得到的正常和电弧特征量之间的区分度更大,电弧和正常特征量的比值最高可达346。基于HHT的电弧故障特征提取方法能够更好地区分正常和电弧情况,有助于提高电弧故障的检测率,降低虚警率,具有重要的工程应用价值。  相似文献   
329.
伍科  张华振  兰澜  周阳 《航空学报》2019,40(7):222751-222751
研究了运用压电陶瓷作动器对碳纤维增强复合材料(CFRP)格栅反射器的型面主动控制。首先,采用了一种具有独立电压自由度的梁单元,以及考虑高阶剪切变形的板单元,对主控格栅反射器进行有限元建模;运用能量变分哈密尔顿原理推导了主控格栅反射器的有限元控制方程,并给出了反射面型面残余均方根(RMS)误差最小的电压最优控制方法。然后,研究了在典型载荷下,反射面残余RMS误差最小的PZT作动器位置分布的优化配置问题;提出了一种将遗传算法和梯度投影方法相结合的改进优化方法,用来求出在限定作动器数量的条件下,作动器几何位置的优化配置,使控制后反射面的残余RMS误差最小;给出的数值算例验证了方法的正确性和有效性。最后,研制了格栅反射器型面主动控制的实验样机,针对反射器的初始制造误差进行了型面主动控制,验证了控制方法的可行性和有效性。  相似文献   
330.
虚拟化技术作为云计算的核心技术,相对于传统技术具有节约开销、易于管理、灵活制定等优势,成为业界应用的热点技术。文章研究了传统的BLP多级安全模型,并改进了该模型应用于虚拟化系统访问控制,结合虚拟安全域的概念,设计实现了虚拟化系统访问控制模型,主要结合分级分域原则对虚拟机之间的通信控制和虚拟机对虚拟磁盘的访问控制进行约束。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号