全文获取类型
收费全文 | 1064篇 |
免费 | 21篇 |
国内免费 | 1篇 |
专业分类
航空 | 485篇 |
航天技术 | 467篇 |
综合类 | 16篇 |
航天 | 118篇 |
出版年
2022年 | 7篇 |
2021年 | 12篇 |
2020年 | 4篇 |
2019年 | 8篇 |
2018年 | 10篇 |
2017年 | 5篇 |
2016年 | 11篇 |
2015年 | 5篇 |
2014年 | 23篇 |
2013年 | 22篇 |
2012年 | 31篇 |
2011年 | 43篇 |
2010年 | 29篇 |
2009年 | 49篇 |
2008年 | 94篇 |
2007年 | 26篇 |
2006年 | 29篇 |
2005年 | 45篇 |
2004年 | 36篇 |
2003年 | 31篇 |
2002年 | 25篇 |
2001年 | 50篇 |
2000年 | 19篇 |
1999年 | 35篇 |
1998年 | 31篇 |
1997年 | 13篇 |
1996年 | 32篇 |
1995年 | 20篇 |
1994年 | 33篇 |
1993年 | 21篇 |
1992年 | 29篇 |
1991年 | 10篇 |
1990年 | 14篇 |
1989年 | 31篇 |
1988年 | 14篇 |
1987年 | 6篇 |
1986年 | 12篇 |
1985年 | 19篇 |
1984年 | 27篇 |
1983年 | 22篇 |
1982年 | 22篇 |
1981年 | 24篇 |
1980年 | 6篇 |
1979年 | 8篇 |
1978年 | 6篇 |
1977年 | 7篇 |
1976年 | 5篇 |
1975年 | 6篇 |
1970年 | 3篇 |
1969年 | 4篇 |
排序方式: 共有1086条查询结果,搜索用时 15 毫秒
11.
Malini Aggarwal H.P. Joshi K.N. Iyer Y.-S. Kwak J.J. Lee H. Chandra K.S. Cho 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
The ionospheric total electron content (TEC) in the northern hemispheric equatorial ionization anomaly (EIA) crest region is investigated by using dual-frequency signals of the Global Positioning System (GPS) acquired from Rajkot (Geog. Lat. 22.29°N, Geog. Long. 70.74°E; Geom. Lat. 14.21°N, Geom. Long. 144.90°E), India. The day-to-day variability of EIA characteristics is examined during low solar activity period (F10.7∼83 sfu). It is found that the daily maximum TEC at EIA crest exhibits a day-to-day and strong semi-annual variability. The seasonal anomaly and equinoctial asymmetry in TEC at EIA is found non-existent and weaker, respectively. We found a moderate and positive correlation of daily magnitude of crest, Ic with daily F10.7 and EUV fluxes with a correlation coefficient of 0.43 and 0.33, respectively indicating an existence of a short-term relation between TEC at EIA and the solar radiation even during low solar activity period. The correlation of daily Ic with Dst index is also moderate (r = −0.35), whereas no correlation is found with the daily Kp index (r = 0.14) respectively. We found that the magnitude of EIA crest is moderately correlated with solar flux in all seasons except winter where it is weakly related (0.27). The magnitude of EIA crest is also found highly related with EEJ strength in spring (r = 0.69) and summer (r = 0.65) than autumn (0.5) and winter (r = 0.47), though EEJ is stronger in autumn than spring. 相似文献
12.
X. Wang J.K. ShiG.J. Wang Y. Gong 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
Monthly median values of foF2, hmF2 and M(3000)F2 parameters, with quarter-hourly time interval resolution for the diurnal variation, obtained with DPS4 digisonde at Hainan (19.5°N, 109.1°E; Geomagnetic coordinates: 178.95°E, 8.1°N) are used to investigate the low-latitude ionospheric variations and comparisons with the International Reference Ionosphere (IRI) model predictions. The data used for the present study covers the period from February 2002 to April 2007, which is characterized by a wide range of solar activity, ranging from high solar activity (2002) to low solar activity (2007). The results show that (1) Generally, IRI predictions follow well the diurnal and seasonal variation patterns of the experimental values of foF2, especially in the summer of 2002. However, there are systematic deviation between experimental values and IRI predictions with either CCIR or URSI coefficients. Generally IRI model greatly underestimate the values of foF2 from about noon to sunrise of next day, especially in the afternoon, and slightly overestimate them from sunrise to about noon. It seems that there are bigger deviations between IRI Model predictions and the experimental observations for the moderate solar activity. (2) Generally the IRI-predicted hmF2 values using CCIR M(3000)F2 option shows a poor agreement with the experimental results, but there is a relatively good agreement in summer at low solar activity. The deviation between the IRI-predicted hmF2 using CCIR M(3000)F2 and observed hmF2 is bigger from noon to sunset and around sunrise especially at high solar activity. The occurrence time of hmF2 peak (about 1200 LT) of the IRI model predictions is earlier than that of observations (around 1500 LT). The agreement between the IRI hmF2 obtained with the measured M(3000)F2 and the observed hmF2 is very good except that IRI overestimates slightly hmF2 in the daytime in summer at high solar activity and underestimates it in the nighttime with lower values near sunrise at low solar activity. 相似文献
13.
Shear flow instabilities are an important aspect of hydrodynamic studies. The present review article discusses the role of an ambient magnetic field which both modifies the Kelvin-Helmholtz instability and may introduce new types of magnetohydrodynamic waves and instabilities. A brief overview of magnetospheric pulsations is presented with an emphasis on the long-period resonant Alfv??n waves associated with the high speed solar wind. The spatio-temporal evolution of magnetically modified shear flow instabilities in various space plasma structures is addressed. A distinction between convective and absolute instabilities is necessary for proper understanding of theory and correct interpretation of the observations. Finally, it is shown how incompressible Alfv??nic disturbances may become unstable in a compressible flow in the absence of any shear. An application to coronal loops is presented. 相似文献
14.
X.B. Zhao W.Z. Shao L.B. Zhao Y. Gao Y.Y. Hu X.Z. Yuan 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2021,67(10):3072-3086
The main objective of our work was to investigate the impact of rain on wave observations from C-band (~5.3 GHz) synthetic aperture radar (SAR) in tropical cyclones. In this study, 10 Sentinel-1 SAR images were available from the Satellite Hurricane Observation Campaign, which were taken under cyclonic conditions during the 2016 hurricane season. The third-generation wave model, known as Simulating WAves Nearshore (SWAN) (version 41.31), was used to simulate the wave fields corresponding to these Sentinel-1 SAR images. In addition, rainfall data from the Tropical Rainfall Measuring Mission satellite passing over the spatial coverage of the Sentinel-1 SAR images were collected. The simulated results were validated against significant wave heights (SWHs) from the Jason-2 altimeter and European Centre for Medium-Range Weather Forecasts data, revealing a root mean square error (RMSE) of ~0.5 m with a 0.25 scatter index. Winds retrieved from the VH-polarized Sentinel-1 SAR images using the Sentinel-1 Extra Wide-swath Mode Wind Speed Retrieval Model after Noise Removal were taken as prior information for wave retrieval. It was discovered that rain did indeed affect the SAR wave retrieval, as evidenced by the 3.21-m RMSE of SWHs between the SAR images and the SWAN model, which was obtained for the ~1000 match-ups with raindrops. The raindrops dampened the wave retrieval when the rain rate was < ~5 mm/hr; however, they enhanced wave retrieval for higher rain rates. It was also found that the portion of the rain-induced ring wave with a wave number > 0.05 rad/m (~125 m wavelength) was clearly observed in the SAR-derived wave spectra. 相似文献
15.
H. Fuke Y. Tasaki K. Abe S. Haino Y. Makida S. Matsuda J.W. Mitchell A.A. Moiseev J. Nishimura M. Nozaki S. Orito J.F. Ormes M. Sasaki E.S. Seo Y. Shikaze R.E. Streitmatter J. Suzuki K. Tanaka T. Yamagami A. Yamamoto T. Yoshida K. Yoshimura 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(12):2050-2055
16.
Y. I. Yermolaev I. G. Lodkina N. S. Nikolaeva M. Y. Yermolaev M. O. Riazantseva 《Cosmic Research》2017,55(3):178-189
This paper discusses the errors in analyzing solar-terrestrial relationships, which result from either disregarding the types of interplanetary drivers in studying the magnetosphere response on their effect or from the incorrect identification of the type of these drivers. In particular, it has been shown that the absence of selection between the Sheath and ICME (the study of so-called CME-induced storms, i.e., magnetic storms generated by CME) leads to errors in the studies of interplanetary conditions of magnetic storm generation, because the statistical analysis has shown that, in the Sheath + ICME sequences, the largest number of storm onsets fell on the Sheath, and the largest number of storms maxima fell at the end of the Sheath and the beginning of the ICME. That is, the situation is observed most frequently when at least the larger part of the main phase of storm generation falls on the Sheath and, in reality, Sheath-induced storms are observed. In addition, we consider several cases in which magnetic storms were generated by corotating interaction regions, whereas the authors attribute them to CME. 相似文献
17.
N. Gopalswamy Z. Mikić D. Maia D. Alexander H. Cremades P. Kaufmann D. Tripathi Y.-M. Wang 《Space Science Reviews》2006,123(1-3):303-339
The coronal mass ejection (CME) phenomenon occurs in closed magnetic field regions on the Sun such as active regions, filament regions, transequatorial interconnection regions, and complexes involving a combination of these. This chapter describes the current knowledge on these closed field structures and how they lead to CMEs. After describing the specific magnetic structures observed in the CME source region, we compare the substructures of CMEs to what is observed before eruption. Evolution of the closed magnetic structures in response to various photospheric motions over different time scales (convection, differential rotation, meridional circulation) somehow leads to the eruption. We describe this pre-eruption evolution and attempt to link them to the observed features of CMEs. Small-scale energetic signatures in the form of electron acceleration (signified by nonthermal radio bursts at metric wavelengths) and plasma heating (observed as compact soft X-ray brightening) may be indicative of impending CMEs. We survey these pre-eruptive energy releases using observations taken before and during the eruption of several CMEs. Finally, we discuss how the observations can be converted into useful inputs to numerical models that can describe the CME initiation. 相似文献
18.
分析了2004年3月13日12:15到12:25UT期间TC-1和Cluster卫星簇的磁通门磁力计(FGM)和电子/电流试验仪(PEACE)的联合观测数据.在此期间,TC-1卫星位于日下点以南的磁层顶附近的磁鞘中,并在12:19UT左右观测到了一个典型的先正后负的磁鞘磁通量传输事件(FTE);而Cluster卫星簇位于北半球日侧高纬磁层项附近,并于12:23UT左右穿出磁层顶进入磁鞘,且在12:21 UT左右也观测到了一个典型的先正后负的磁层FTE.比较分析发现此两个FTE具有类似的磁场结构和等离子体特征,可能是同一个北向运动的FTE先后被TC-1和Cluster卫星观测到.利用Cluster 4颗卫星的多点同时观测数据,采用最小方向微分法和时空微分方法,推断Cluster卫星观测的这个FTE是尺度大小约为1.21Re的准二维结构,其运动方向为东北方向,与Cooling模型预测方向基本一致.利用Cooling模型的预测,推算了TC-1卫星在12:19UT观测的FTE的运动速度和尺度,进而得出随着通量管的极向运动,其速度和尺度均有所增加. 相似文献
19.
Yihua Zheng Anthony T.Y. Lui Mei-Ching Fok Brian J. Anderson Pontus C. Brandt Donald G. Mitchell 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(8):1234-1242
One essential component of magnetosphere and ionosphere coupling is the closure of the ring current through Region 2 field-aligned current (FAC). Using the Comprehensive Ring Current Model (CRCM), which includes magnetosphere and ionosphere coupling by solving the kinetic equation of ring current particles and the closure of the electric currents between the two regions, we have investigated the effects of high latitude potential, ionospheric conductivity, plasma sheet density and different magnetic field models on the development of Region 2 field-aligned currents, and the relationship between R2 FACs and the ring current. It is shown that an increase in high latitude potential, ionospheric conductivity or plasma sheet density generally results in an increase in Region 2 FACs’ intensity, but R2 FACs display different local time and latitudinal distributions for changes in each parameter due to the different mechanisms involved. Our simulation results show that the magnetic field configuration of the inner magnetosphere is also an important factor in the development of Region 2 field-aligned current. More numerical experiments and observational results are needed in further our understanding of the complex relationship of the two current systems. 相似文献
20.
C.T. Russell T.L. Zhang R.J. Strangeway H.Y. Wei M. Delva W. Magnes 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(1):113-117
The magnetometer on Venus Express was designed to be able to obtain 128 Hz samples of the magnetic field from two sensors in a gradiometer configuration. This mode is used around periapsis to determine whether the signals reported at low altitudes near 100 Hz, had the properties of electromagnetic waves generated by electric discharges in the Venus atmosphere. The lack of a magnetic cleanliness program and the shortness of the magnetometer boom make this a challenging measurement. Fortunately the signals are sufficiently strong that they can be easily resolved with rather straightforward analysis techniques. 相似文献