首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1055篇
  免费   17篇
  国内免费   3篇
航空   477篇
航天技术   466篇
综合类   15篇
航天   117篇
  2022年   5篇
  2021年   12篇
  2019年   7篇
  2018年   9篇
  2017年   4篇
  2016年   10篇
  2015年   5篇
  2014年   22篇
  2013年   21篇
  2012年   31篇
  2011年   43篇
  2010年   28篇
  2009年   49篇
  2008年   94篇
  2007年   26篇
  2006年   28篇
  2005年   45篇
  2004年   36篇
  2003年   30篇
  2002年   25篇
  2001年   50篇
  2000年   19篇
  1999年   35篇
  1998年   36篇
  1997年   13篇
  1996年   32篇
  1995年   20篇
  1994年   33篇
  1993年   21篇
  1992年   29篇
  1991年   10篇
  1990年   14篇
  1989年   31篇
  1988年   13篇
  1987年   6篇
  1986年   12篇
  1985年   19篇
  1984年   27篇
  1983年   22篇
  1982年   20篇
  1981年   24篇
  1980年   6篇
  1979年   8篇
  1978年   6篇
  1977年   7篇
  1976年   5篇
  1975年   6篇
  1974年   3篇
  1970年   3篇
  1969年   4篇
排序方式: 共有1075条查询结果,搜索用时 15 毫秒
851.
Reigber  C.  Balmino  G.  Schwintzer  P.  Biancale  R.  Bode  A.  Lemoine  J.-M.  König  R.  Loyer  S.  Neumayer  H.  Marty  J.-C.  Barthelmes  F.  Perosanz  F.  Zhu  S. Y. 《Space Science Reviews》2003,108(1-2):55-66
A new long-wavelength global gravity field model, called EIGEN-1, has been derived in a joint German-French effort from orbit perturbations of the CHAMP satellite, exploiting CHAMP-GPS satellite-to-satellite tracking and on-board accelerometer data over a three months time span. For the first time it becomes possible to recover the gravity field from one satellite only. Thanks to CHAMP'S tailored orbit characteristics and dedicated instrumentation, providing continuous tracking and on-orbit measurements of non-gravitational satellite accelerations, the three months CHAMP-only solution provides the geoid and gravity with an accuracy of 20 cm and 1 mgal, respectively, at a half wavelength resolution of 550 km, which is already an improvement by a factor of two compared to any pre-CHAMP satellite-only gravity field model. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
852.
Most substorm researchers assume substorms to be caused by a unique large-scale process. However, a critical evaluation of substorm observations indicates that a new paradigm is needed to understand the substorm phenomenon and the magnetospheric dynamics in general. It is proposed here that substorms involve a number of physical processes covering over a wide range of spatial and temporal scales. Potential candidates include the kinetic or shear ballooning instability, the Kelvin-Helmholtz instability, the cross-field current instability, the tearing instability, and magnetic reconnection. An observational constraint on the qualified process for substorm onset is that it must be associated with magnetic field lines of auroral arcs since substorm onsets start with brightening of a pre-existing auroral arc. Which particular process dominates in a given substorm depends on the present and past states of the magnetosphere as well as the external solar wind. The magnetosphere is almost perpetually driven by the solar wind to be near a critical point and in a metastable state. Magnetospheric disturbances occur sporadically in multiple localized sites. A substorm is realized when the combined effect of these localized disturbances become global in extent, much like the system-wide activity in a sandpile or avalanche model.  相似文献   
853.
This paper presents the consensus arrived at by the authors with respect to the contributions to the substorm expansive phase of direct energy input from the solar wind and from energy stored in the magnetotail which is released in a sometimes unpredictable manner. Two physical processes, neither of which can be ignored, are considered to be of importance in the dispensation of the energy input from the solar wind. One of these is the driven process in which energy, supplied from the solar wind, is directly dissipated in the ionosphere with the only clearly definable delay being due to the inductance of the magnetosphere-ionosphere system. The other is the loading-unloading process in which energy from the solar wind is first stored in the magnetotail and then is suddenly released to be deposited in the ionosphere as a consequence of external changes in the interplanetary medium or internal triggering processes. Although the driven process appears to be more dominant on a statistical basis in terms of solar wind-geomagnetic activity relationships, one or the other of the two above processes may dominate for any individual cases. Moreover, the two processes may operate simultaneously during a given phase of the substorm, e.g., the magnetotail may experience loading as the driven system increases in strength. Thus, in our approach, substorms are described in terms of physical processes which we infer to be operative in the magnetosphere and the terminology of the past (e.g., phases) is related to those inferred physical processes. The pattern of substorm development in response to changes in the interplanetary medium is presented for a canonical isolated substorm.Now at Max-Planck-Institut für Physik und Astrophysik, Institut für Extraterrestrische Physik, D-8046 Garching, F.R.G.  相似文献   
854.
The background and historical development at Corning Glass Works of lightweight mirror blanks are presented. Design considerations using a new low-expansion glass are given. The combination of the new material with near-zero thermal expansion and a fused monolithic core technology allows lightweight mirrors to be manufactured with weight savings approaching 80 percent of the equivalent solid and, at the same time, provides exceptional thermal and dimensional stability. Illustrations of lightweight mirror structures and core configurations are also presented.  相似文献   
855.
Cosmic Ray Induced Ion Production in the Atmosphere   总被引:1,自引:0,他引:1  
An overview is presented of basic results and recent developments in the field of cosmic ray induced ionisation in the atmosphere, including a general introduction to the mechanism of cosmic ray induced ion production. We summarize the results of direct and indirect measurements of the atmospheric ionisation with special emphasis to long-term variations. Models describing the ion production in the atmosphere are also overviewed together with detailed results of the full Monte-Carlo simulation of a cosmic ray induced atmospheric cascade. Finally, conclusions are drawn on the present state and further perspectives of measuring and modeling cosmic ray induced ionisation in the terrestrial atmosphere.  相似文献   
856.
MIRO: Microwave Instrument for Rosetta Orbiter   总被引:1,自引:0,他引:1  
The European Space Agency Rosetta Spacecraft, launched on March 2, 2004 toward Comet 67P/Churyumov-Gerasimenko, carries a relatively small and lightweight millimeter-submillimeter spectrometer instrument, the first of its kind launched into deep space. The instrument will be used to study the evolution of outgassing water and other molecules from the target comet as a function of heliocentric distance. During flybys of the asteroids (2867) Steins and (21) Lutetia in 2008 and 2010 respectively, the instrument will measure thermal emission and search for water vapor in the vicinity of these asteroids. The instrument, named MIRO (Microwave Instrument for the Rosetta Orbiter), consists of a 30-cm diameter, offset parabolic reflector telescope followed by two heterodyne receivers. Center-band operating frequencies of the receivers are near 190 GHz (1.6 mm) and 562 GHz (0.5 mm). Broadband continuum channels are implemented in both frequency bands for the measurement of near surface temperatures and temperature gradients in Comet 67P/Churyumov-Gerasimenko and the asteroids (2867) Steins and (21) Lutetia. A 4096 channel CTS (Chirp Transform Spectrometer) spectrometer having 180 MHz total bandwidth and 44 kHz resolution is, in addition to the continuum channel, connected to the submillimeter receiver. The submillimeter radiometer/spectrometer is fixed tuned to measure four volatile species – CO, CH3OH, NH3 and three, oxygen-related isotopologues of water, H2 16O, H2 17O and H2 18O. The basic quantities measured with the MIRO instrument are surface temperature, gas production rates and relative abundances, and velocity and excitation temperature of each species, along with their spatial and temporal variability. This paper provides a short discussion of the scientific objectives of the investigation, and a detailed discussion of the MIRO instrument system.  相似文献   
857.
The Rosetta Plasma Consortium (RPC) will make in-situ measurements of the plasma environment of comet 67P/Churyumov-Gerasimenko. The consortium will provide the complementary data sets necessary for an understanding of the plasma processes in the inner coma, and the structure and evolution of the coma with the increasing cometary activity. Five sensors have been selected to achieve this: the Ion and Electron Sensor (IES), the Ion Composition Analyser (ICA), the Langmuir Probe (LAP), the Mutual Impedance Probe (MIP) and the Magnetometer (MAG). The sensors interface to the spacecraft through the Plasma Interface Unit (PIU). The consortium approach allows for scientific, technical and operational coordination, and makes optimum use of the available mass and power resources.  相似文献   
858.
采用同轴送粉方法,激光熔覆制备了WC增强Ni3Al金属间化合物基复合涂层,通过试验,优化了工艺参数,对激光熔覆涂层的成分、组织和硬度进行了测试和分析.结果表明,激光熔覆涂层无裂纹和气孔,与基体形成良好的冶金结合,WC颗粒的添加显著提高了涂层硬度.  相似文献   
859.
The Thermal Emission Imaging System (THEMIS) on 2001 Mars Odyssey will investigate the surface mineralogy and physical properties of Mars using multi-spectral thermal-infrared images in nine wavelengths centered from 6.8 to 14.9 μm, and visible/near-infrared images in five bands centered from 0.42 to 0.86 μm. THEMIS will map the entire planet in both day and night multi-spectral infrared images at 100-m per pixel resolution, 60% of the planet in one-band visible images at 18-m per pixel, and several percent of the planet in 5-band visible color. Most geologic materials, including carbonates, silicates, sulfates, phosphates, and hydroxides have strong fundamental vibrational absorption bands in the thermal-infrared spectral region that provide diagnostic information on mineral composition. The ability to identify a wide range of minerals allows key aqueous minerals, such as carbonates and hydrothermal silica, to be placed into their proper geologic context. The specific objectives of this investigation are to: (1) determine the mineralogy and petrology of localized deposits associated with hydrothermal or sub-aqueous environments, and to identify future landing sites likely to represent these environments; (2) search for thermal anomalies associated with active sub-surface hydrothermal systems; (3) study small-scale geologic processes and landing site characteristics using morphologic and thermophysical properties; and (4) investigate polar cap processes at all seasons. THEMIS follows the Mars Global Surveyor Thermal Emission Spectrometer (TES) and Mars Orbiter Camera (MOC) experiments, providing substantially higher spatial resolution IR multi-spectral images to complement TES hyperspectral (143-band) global mapping, and regional visible imaging at scales intermediate between the Viking and MOC cameras. The THEMIS uses an uncooled microbolometer detector array for the IR focal plane. The optics consists of all-reflective, three-mirror anastigmat telescope with a 12-cm effective aperture and a speed of f/1.6. The IR and visible cameras share the optics and housing, but have independent power and data interfaces to the spacecraft. The IR focal plane has 320 cross-track pixels and 240 down-track pixels covered by 10 ~1-μm-bandwidth strip filters in nine different wavelengths. The visible camera has a 1024×1024 pixel array with 5 filters. The instrument weighs 11.2 kg, is 29 cm by 37 cm by 55 cm in size, and consumes an orbital average power of 14 W.  相似文献   
860.
雷诺应力模型在三维湍流流场计算中的应用   总被引:10,自引:0,他引:10  
从雷诺应力模型出发,通过求解雷诺平均N-S方程组获得三维湍流流场的数值解。计算中比较了多种湍流模式,并进行了相应的流场计算。本文完成了两个典型算例。从算例1的计算结果与实验值比较中发现:采用雷诺应力模型(RSM)计算的三维流场比采用k-ε模型更贴近实验值;算例2采用了RSM模型及三维非结构网格,对一典型内流问题进行了三维流场计算。算例的数值实践表明:采用雷诺应力模型可以有效的计算各向异性的湍流流场;另外,发展非结构网格有助于模拟壁面附近的流动,并节省计算机内存。   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号