首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   124篇
  免费   0篇
航空   59篇
航天技术   51篇
航天   14篇
  2023年   1篇
  2018年   5篇
  2016年   1篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   6篇
  2008年   4篇
  2007年   3篇
  2006年   2篇
  2005年   6篇
  2004年   12篇
  2003年   11篇
  2001年   2篇
  2000年   4篇
  1999年   2篇
  1998年   7篇
  1997年   1篇
  1996年   5篇
  1994年   11篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   5篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1978年   3篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1973年   3篇
  1972年   3篇
  1966年   1篇
  1965年   1篇
排序方式: 共有124条查询结果,搜索用时 31 毫秒
51.
Rood  R. T.  Bania  T. M.  Balser  D. S.  Wilson  T. L. 《Space Science Reviews》1998,84(1-2):185-198
We report on our continuing efforts to determine 3He abundances in H II regions and planetary nebulae. Our detections of 3He in some PNe show that some stars produce large amounts of 3He. However the H II region abundances show no evidence for this production. From our sample of > 40 H II regions, the subsample which should yield the most reliable abundances has 3He/H abundances which scatter between 1-2 × 10-5. There is no trend with either galactocentric distance or metallicity. Even if we do not understand the underlying mechanisms, we see empirically that stars neither produce nor destroy 3He in a major way. We thus suggest that the level of the "3He Plateau" (3He/H = 1.5 -0.5 +1.0 × 10-5) is a reasonable estimate for the primordial 3He.  相似文献   
52.
We have developed a model and associated computational procedure for estimating energetic proton exposures during a major solar proton event that occur in combination with a large magnetic storm. Transmission functions for solar protons are computed using geomagnetic vertical cutoff data for quiescent and disturbed conditions. Predicted exposures in low altitude polar orbit are found to be orders of magnitude greater for severe magnetic storm conditions than are corresponding exposures in the absence of major disturbances. We examine the response scenario for the events of November 1960 as an example.  相似文献   
53.
The risk of radiation-induced cancer to space travelers outside the earth's magnetosphere will be of concern on missions to the Moon and beyond to Mars. High energy galactic cosmic rays with high charge (HZE particles) will penetrate the spacecraft and the bodies of the astronauts, sometimes fragmenting into nuclear secondary species of lower charge but always ionizing densely, thus causing cellular damage which may lead to malignant transformation. To quantitate this risk, the concept of dose equivalent (in which a quality factor Q as a function of LET is assumed) may not be adequate, since different particles of the same LET may have different efficiencies for tumor induction. Also, RBE values on which quality factors are based depend on response to low-LET radiation at low doses, a very difficult region for which to obtain reliable experimental data. Thus, we introduce a new concept, a fluence-related risk coefficient (F), which is the risk of a cancer per unit particle fluence and which we call the risk cross section. The total risk is the sum of the risk from each particle type: sigma i integral Fi(Li) phi i(Li) dLi, where Li is the LET and phi i(Li) is the fluence-LET spectrum of the ith particle type. As an example, tumor prevalence data in mice are used to estimate the probability of mouse Harderian gland tumor induction per year on an extra-magnetospheric mission inside an idealized shielding configuration of a spherical aluminum shell 1 g/cm2 thick. The combined shielding code BRYNTRN/GCR is used to generate the LET spectra at the center of the sphere. Results indicate a yearly prevalence at solar minimum conditions of 0.06, with 60% of this arising from charge components with Z between 10 and 28, and two-thirds of the contribution arising from LET components between 10 and 200 keV/micrometers.  相似文献   
54.
One outstanding question to be addressed in assessing the risk of exposure to space travelers from galactic cosmic rays (GCR) outside the geomagnetosphere is to ascertain the effects of single heavy-ion hits on cells in critical regions of the central nervous system (CNS). As a first step toward this end, it is important to determine how many "hits" might be received by a neural cell in several critical CNS areas during an extended mission outside the confines of the earth's magnetic field. Critical sites in the CNS: the macula, and an interior brain point (typical of the genu, thalamus, hippocampus and nucleus basalis of Meynert) were chosen for the calculation of hit frequencies from galactic cosmic rays for a mission to Mars during solar minimum (i.e., at maximum cosmic-ray intensity). The shielding at a given position inside the body was obtained using the Computerized Anatomical Man (CAM) model, and a radiation transport code which includes nuclear fragmentation was used to calculate yearly fluences at the point of interest. Since the final Mars spacecraft shielding configuration has not yet been determined, we considered the minimum amount of aluminum required for pressure vessel-wall requirements in the living quarters of a spacecraft, and a typical duty area as a pressure vessel plus necessary equipment. The conclusions are: (1) variation of the position of the "target site" within the head plays only a small role in varying hit frequencies; (2) the average number of hits depends linearly on the cross section of the critical portion of the cell assumed in the calculation; (3) for a three-year mission to Mars at solar minimum (i.e., assuming the 1977 spectrum of galactic cosmic rays), 2% or 13% of the "critical sites" of cells in the CNS would be directly hit at least once by iron ions, depending on whether 60 micrometers2 or 471 micrometers2 is assumed as the critical cross sectional area; and (4) roughly 6 million out of some 43 million hippocampal cells and 55 thousand out of 1.8 million thalamus cell nuclei would be directly hit by iron ions at least once on such a mission for space travelers inside a simple pressure vessel. Also, roughly 20 million out of 43 million hippocampal cells and 230 thousand out of 1.8 million thalamus cell nuclei would be directly hit by one or more particles with z > or = 15 on such a mission.  相似文献   
55.
Evidence on the issues of whether the W Serpentis stars are a coherent class, and how they may interface with the Algol systems, is reviewed, with emphasis on the idea that they are semi-detached systems in the latter part of the rapid phase of mass transfer, with optically and geometrically thick disks of transferred gas around the (now) more massive star. We are interested in what will be seen when the gas clears away, and mainly examine the idea that it will be an Algol-type system. More particularly, consideration is given to centrifugally limited accretion as a mechanism to build up a substantial disk, and the presumed evolutionary sequence is from a W Ser to a rapidly rotating Algol to a normal Algol system. Systems such as V367 Cyg and RW Tau fit into this scheme only with difficulty. Because it is extremely difficult to measure the rotation of some W Ser (mass) primaries, it is natural to look at the rotation statistics of Algols to test this idea. The badly behaved light curves and spectroscopy of some Algols (eg. U Cep, RZ Sct) may be attributable to the double contact condition, and the ramifications of this possibility are discussed. If so, the rotation statistics of Algols should show two spikes, corresponding to the two special conditions into which a system should be driven by tidal braking and centrifugally limited spinup. Present rotation statistics do show these spikes. Algols should flip between these states fairly quickly, depending on the mass transfer rate. Thus, to the extent that the meager statistics can be accepted as meaningful, the new (fourth) morphological type of close binary (double contact) has attained demonstrable reality. The rotation statistics are presented in terms of a particular rotation parameter, R, which is zero for synchronism and unity for the centrifugal limit. Future work should develop rotation statistics to see if the rotational lobe-filling (R = 1) spike persists. It should also look into whether W Ser primaries are on the hydrogen burning main sequence, or in general what they are. We also need more light curves of W Ser type systems, high resolution line profiles for the (mass) primaries (with particular attention to the W Ser-Algol transition cases), and spectroscopy of low inclination W Serpentis systems, such as KX And.  相似文献   
56.
The statistics of aircraft radar cross section (RCS) are estimated by fitting members of the chi-square family of distributions to empirical distributions obtained from blocks of RCS data, each block of data corresponding to a particular aircraft azimuth aspect. The parameters of the fitted distributions vary with azimuth aspect angle, type of aircraft, and radar frequency. Detection probabilities based on the estimated statistics are calculated and compared with detection probabilities based on Rayleigh statistics. This comparison indicates that the average value of radar cross section has much more effect on probability of detection than the normalized variance of RCS, and in the usual situation tends to mask the effect of the normalized variance on probability of detection.  相似文献   
57.
The low-energy neutral atom imager for IMAGE   总被引:1,自引:0,他引:1  
Moore  T.E.  Chornay  D.J.  Collier  M.R.  Herrero  F.A.  Johnson  J.  Johnson  M.A.  Keller  J.W.  Laudadio  J.F.  Lobell  J.F.  Ogilvie  K.W.  Rozmarynowski  P.  Fuselier  S.A.  Ghielmetti  A.G.  Hertzberg  E.  Hamilton  D.C.  Lundgren  R.  Wilson  P.  Walpole  P.  Stephen  T.M.  Peko  B.L.  Van Zyl  B.  Wurz  P.  Quinn  J.M.  Wilson  G.R. 《Space Science Reviews》2000,91(1-2):155-195
The `Imager for Magnetosphere-to-Aurora Global Exploration (IMAGE) will be launched early in the year 2000. It will be the first mission dedicated to imaging, with the capability to determine how the magnetosphere changes globally in response to solar storm effects in the solar wind, on time scales as short as a few minutes. The low energy neutral atom (LENA) imager uses a new atom-to-negative ion surface conversion technology to image the neutral atom flux and measure its composition (H and O) and energy distribution (10 to 750 eV). LENA uses electrostatic optics techniques for energy (per charge) discrimination and carbon foil time-of-flight techniques for mass discrimination. It has a 90°×° field-of-view in 12 pixels, each nominally 8°×°. Spacecraft spin provides a total field-of-view of 90°×360°, comprised of 12×45 pixels. LENA is designed to image fast neutral atom fluxes in its energy range, emitted by auroral ionospheres or the sun, or penetrating from the interstellar medium. It will thereby determine how superthermal plasma heating is distributed in space, how and why it varies on short time scales, and how this heating is driven by solar activity as reflected in solar wind conditions.  相似文献   
58.
Deep space environments for human exploration.   总被引:3,自引:0,他引:3  
Mission scenarios outside the Earth's protective magnetic shield are being studied. Included are high usage assets in the near-Earth environment for casual trips, for research, and for commercial/operational platforms, in which career exposures will be multi-mission determined over the astronaut's lifetime. The operational platforms will serve as launching points for deep space exploration missions, characterized by a single long-duration mission during the astronaut's career. The exploration beyond these operational platforms will include missions to planets, asteroids, and planetary satellites. The interplanetary environment is evaluated using convective diffusion theory. Local environments for each celestial body are modeled by using results from the most recent targeted spacecraft, and integrated into the design environments. Design scenarios are then evaluated for these missions. The underlying assumptions in arriving at the model environments and their impact on mission exposures within various shield materials will be discussed.  相似文献   
59.
The transport properties of galactic cosmic rays (GCR) in the atmosphere, material structures, and human body (self-shielding) are of interest in risk assessment for supersonic and subsonic aircraft and for space travel in low-Earth orbit and on interplanetary missions. Nuclear reactions, such as knockout and fragmentation, present large modifications of particle type and energies of the galactic cosmic rays in penetrating materials. We make an assessment of the current nuclear reaction models and improvements in these model for developing required transport code data bases. A new fragmentation data base (QMSFRG) based on microscopic models is compared to the NUCFRG2 model and implications for shield assessment made using the HZETRN radiation transport code. For deep penetration problems, the build-up of light particles, such as nucleons, light clusters and mesons from nuclear reactions in conjunction with the absorption of the heavy ions, leads to the dominance of the charge Z = 0, 1, and 2 hadrons in the exposures at large penetration depths. Light particles are produced through nuclear or cluster knockout and in evaporation events with characteristically distinct spectra which play unique roles in the build-up of secondary radiation's in shielding. We describe models of light particle production in nucleon and heavy ion induced reactions and make an assessment of the importance of light particle multiplicity and spectral parameters in these exposures.  相似文献   
60.
The requirements for space-based integrated circuit applications are defined with an emphasis on being radiation tolerant and low power consuming. Flexible analog signal processors (FASPs) are outlined as a means by which effective circuit designs can be utilized to perform a multitude of tasks. The development of complementary III-V technologies have been proven to meet the demands of the space environment, and have demonstrated the potential for frequency operation beyond 1 GHz using power supply voltages at or below 1.5 Volts. The novel fabrication process known as Xs-MET (pronounced kismet, which uses the Creek letter chi, X, and stands for Complementary Heterostructure Integrated Single Metal Transistor), is introduced as a manufacturing technique to be used in FASP design. The Xs-MET fabrication process is outlined with preliminary device results presented. An example of a FASP circuit design using Xs-MET is provided. Conclusions regarding the utilization of the Xs-MET process for FASPs are outlined with comments focusing on a space-based demonstration  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号