首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   124篇
  免费   0篇
航空   59篇
航天技术   51篇
航天   14篇
  2023年   1篇
  2018年   5篇
  2016年   1篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   6篇
  2008年   4篇
  2007年   3篇
  2006年   2篇
  2005年   6篇
  2004年   12篇
  2003年   11篇
  2001年   2篇
  2000年   4篇
  1999年   2篇
  1998年   7篇
  1997年   1篇
  1996年   5篇
  1994年   11篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   5篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1978年   3篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1973年   3篇
  1972年   3篇
  1966年   1篇
  1965年   1篇
排序方式: 共有124条查询结果,搜索用时 31 毫秒
91.
This paper applies optimal control theory to designing constant gain filters which minimize a weighted average of the filtered variances. Uniaxial second-order motion is studied in detail, and an example is given which indicates that a constant gain filter may be designed with performance comparable to a Kalman filter. An appendix is included which shows how the approach may be extended to higher order systems.  相似文献   
92.
Radiobiology experiments performed in space will encounter continuous exposures to the cosmic rays and fractionated exposures to trapped protons which accumulate to several hundred dose fractions in a few weeks. Using models of track structure and cellular kinetics combined with models of the radiation environment and radiation transport, we consider calculations of damage rates for cell cultures. Analysis of the role of repair mechanisms for space exposures for the endpoints of survival and transformation is emphasized.  相似文献   
93.
A new Atmospheric Ionizing Radiation (AIR) model is currently being developed for use in radiation dose evaluation in epidemiological studies targeted to atmospheric flight personnel such as civilian airlines crewmembers. The model will allow computing values for biologically relevant parameters, e.g. dose equivalent and effective dose, for individual flights from 1945. Each flight is described by its actual three dimensional flight profile, i.e. geographic coordinates and altitudes varying with time. Solar modulated primary particles are filtered with a new analytical fully angular dependent geomagnetic cut off rigidity model, as a function of latitude, longitude, arrival direction, altitude and time. The particle transport results have been obtained with a technique based on the three-dimensional Monte Carlo transport code FLUKA, with a special procedure to deal with HZE particles. Particle fluxes are transformed into dose-related quantities and then integrated all along the flight path to obtain the overall flight dose. Preliminary validations of the particle transport technique using data from the AIR Project ER-2 flight campaign of measurements are encouraging. Future efforts will deal with modeling of the effects of the aircraft structure as well as inclusion of solar particle events.  相似文献   
94.
A method of viewing search radar signals and data is described and analyzed in which the image processing technique of the Hough transform is used to extract detections and simultaneous tracks from multi-dimensional data maps. System design concepts are considered and simulation examples are given that illustrate the concept. The technique offers many advantages when compared with more traditional techniques. These advantages include improved detection, a solution to the range walk problem, flexibility of implementation, elimination of slow scan-rate latency and automatic track acquisition without revisit. The concept is similar to track-before-detect algorithms that use preliminary information from previous scans to aid in target declarations  相似文献   
95.
NASA is very interested in improving its ability to monitor and forecast the radiation levels that pose a health risk to space-walking astronauts as they construct the International Space Station and astronauts that will participate in long-term and deep-space missions. Human exploratory missions to the moon and Mars within the next quarter century, will expose crews to transient radiation from solar particle events which include high-energy galactic cosmic rays and high-energy protons. Because the radiation levels in space are high and solar activity is presently unpredictable, adequate shielding is needed to minimize the deleterious health effects of exposure to radiation. Today, numerous models have been developed and used to predict radiation exposure. Such a model is the Space Environment Information Systems (SPENVIS) modeling program, developed by the Belgian Institute for Space Aeronautics. SPENVIS, which has been assessed to be an excellent tool in characterizing the radiation environment for microelectronics and investigating orbital debris, is being evaluated for its usefulness with determining the dose and dose-equivalent for human exposure. Thus far. the calculations for dose-depth relations under varying shielding conditions have been in agreement with calculations done using HZETRN and PDOSE, which are well-known and widely used models for characterizing the environments for human exploratory missions. There is disagreement when assessing the impact of secondary radiation particles since SPENVIS does a crude estimation of the secondary radiation particles when calculating LET versus Flux. SPENVIS was used to model dose-depth relations for the blood-forming organs. Radiation sickness and cancer are life-threatening consequences resulting from radiation exposure. In space. exposure to radiation generally includes all of the critical organs. Biological and toxicological impacts have been included for discussion along with alternative risk mitigation methods--shielding and anti-carcinogens.  相似文献   
96.
A new computational procedure to determine particle fluxes in the Earth's atmosphere is presented. The primary cosmic ray spectrum has been modeled through an analysis of simultaneous proton and helium measurements made on high altitude balloon flights and spacecraft. An improved global fit to the data was achieved through applying a unique technique utilizing the Fokker-Plank equation with a non-linear rigidity-dependent diffusion coefficient. The propagation of primary particles through the Earth's atmosphere is calculated with a three-dimensional Monte Carlo transport program called FLUKA. Primary protons and helium nuclei (alphas) are generated within the rigidity range of 0.5 GV-20 TV uniform in cos2 theta. For a given location, primaries above the effective cutoff rigidity are transported through the atmosphere. Alpha particles are initially transported with a separate package called HEAVY to simulate fragmentation. This package interfaces with FLUKA to provide interaction starting points for each nucleon originating from a helium nucleus. Results from this calculation are presented and compared to measurements.  相似文献   
97.
Fifty years ago, publications began to discuss the possibilities of electromagnetic flow control (EMFC) to improve aerodynamic performance. This led to an era of research that focused on coupling the fundamentals of magnetohydrodynamics (MHD) with propulsion, control, and power generation systems. Unfortunately, very few designs made it past an exploratory phase as, among other issues, power consumption was unreasonably high. Recent proposed advancements in technology like the MARIAH hypersonic wind tunnel and the AJAX scramjet engine concepts have led to a new phase of MHD research in the aerospace industry, with many interdisciplinary applications. Compared with propulsion systems and channel flow accelerators, EMFC concepts applied to control surface aerodynamics have not seen the same level of advancement that may eventually produce a device that can be integrated with an aircraft or missile. The purpose of this paper is to review the overall feasibility of the different electric and EMFC concepts. Emphasis is placed on EMFC with high voltage ionization sources and experimental work.  相似文献   
98.
High energy neutral atom (hena) imager for the IMAGE mission   总被引:1,自引:0,他引:1  
Mitchell  D.G.  Jaskulek  S.E.  Schlemm  C.E.  Keath  E.P.  Thompson  R.E.  Tossman  B.E.  Boldt  J.D.  Hayes  J.R.  Andrews  G.B.  Paschalidis  N.  Hamilton  D.C.  Lundgren  R.A.  Tums  E.O.  Wilson  P.  Voss  H.D.  Prentice  D.  Hsieh  K.C.  Curtis  C.C.  Powell  F.R. 《Space Science Reviews》2000,91(1-2):67-112
The IMAGE mission will be the first of its kind, designed to comprehensively image a variety of emissions from the Earth's magnetosphere, with sufficient time resolution to follow the dynamics associated with the development of magnetospheric storms. Energetic neutral atoms (ENA) emitted from the ring current during storms are one of the key emissions that will be imaged. This paper describes the characteristics of the High Energy Neutral Atom imager, HENA. Using pixelated solid state detectors, imaging microchannel plates, electron optics, and time of flight electronics, HENA is designed to return images of the ENA emitting regions of the inner magnetosphere with 2 minute time resolution, at angular resolution of 8 degrees or better above the energy of 50 keV/nucleon. HENA will also image separately the emissions in hydrogen, helium, and oxygen above 30 keV/nucleon. HENA will reject energetic ions below 200 keV/charge, allowing ENA images to be returned in the presence of ambient energetic ions. HENA images will reveal the distribution and the evolution of energetic ion distributions as they are injected into the ring current during geomagnetic storms, as they drift about the Earth on both open and closed drift paths, and as they decay through charge exchange to pre-storm levels. Substorm ion injections will also be imaged, as will the regions of low altitude, high latitude ion precipitation into the upper atmosphere.  相似文献   
99.
100.
Electrostatic space radiation shielding   总被引:2,自引:0,他引:2  
For the success of NASA’s new vision for space exploration to Moon, Mars and beyond, exposures from the hazards of severe space radiation in deep space long duration missions is ‘a must solve’ problem. The payload penalty demands a very stringent requirement on the design of the spacecrafts for human deep space missions. The exploration beyond low Earth orbit (LEO) to enable routine access of space will require protection from the hazards of the accumulated exposures of space radiation, Galactic Cosmic Rays (GCR) and Solar Particle Events (SPE), and minimizing the production of secondary radiation is a great advantage. There is a need to look to new horizons for newer technologies. The present investigation revisits electrostatic active radiation shielding and explores the feasibility of using the electrostatic shielding in concert with the state-of-the-art materials shielding and protection technologies. The full space radiation environment has been used, for the first time, to explore the feasibility of electrostatic shielding. The goal is to repel enough positive charge ions so that they miss the spacecraft without attracting thermal electrons. Conclusions are drawn for the future directions of space radiation protection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号