全文获取类型
收费全文 | 165篇 |
免费 | 1篇 |
国内免费 | 1篇 |
专业分类
航空 | 89篇 |
航天技术 | 29篇 |
航天 | 49篇 |
出版年
2024年 | 1篇 |
2021年 | 3篇 |
2020年 | 2篇 |
2019年 | 2篇 |
2018年 | 11篇 |
2017年 | 7篇 |
2016年 | 1篇 |
2015年 | 2篇 |
2014年 | 3篇 |
2013年 | 8篇 |
2012年 | 7篇 |
2011年 | 12篇 |
2010年 | 3篇 |
2009年 | 7篇 |
2008年 | 8篇 |
2007年 | 8篇 |
2006年 | 5篇 |
2005年 | 12篇 |
2004年 | 5篇 |
2003年 | 3篇 |
2002年 | 2篇 |
2001年 | 3篇 |
2000年 | 1篇 |
1999年 | 5篇 |
1997年 | 1篇 |
1995年 | 2篇 |
1994年 | 2篇 |
1989年 | 1篇 |
1987年 | 5篇 |
1986年 | 3篇 |
1984年 | 4篇 |
1983年 | 2篇 |
1982年 | 1篇 |
1981年 | 1篇 |
1980年 | 1篇 |
1979年 | 1篇 |
1978年 | 1篇 |
1977年 | 1篇 |
1971年 | 1篇 |
1969年 | 1篇 |
1968年 | 5篇 |
1967年 | 6篇 |
1966年 | 7篇 |
排序方式: 共有167条查询结果,搜索用时 15 毫秒
61.
Brigitte Knapmeyer-Endrun Naomi Murdoch Balthasar Kenda Matthew P. Golombek Martin Knapmeyer Lars Witte Nicolas Verdier Sharon Kedar Philippe Lognonné William B. Banerdt 《Space Science Reviews》2018,214(5):94
Based on an updated model of the regolith’s elastic properties, we simulate the ambient vibrations background wavefield recorded by InSight’s Seismic Experiment for Interior Structure (SEIS) on Mars to characterise the influence of the regolith and invert SEIS data for shallow subsurface structure. By approximately scaling the synthetics based on seismic signals of a terrestrial dust devil, we find that the high-frequency atmospheric background wavefield should be above the self-noise of SEIS’s SP sensors, even if the signals are not produced within 100–200 m of the station. We compare horizontal-to-vertical spectral ratios and Rayleigh wave ellipticity curves for a surface-wave based simulation on the one hand with synthetics explicitly considering body waves on the other hand and do not find any striking differences. Inverting the data, we find that the results are insensitive to assumptions on density. By contrast, assumptions on the velocity range in the upper-most layer have a strong influence on the results also at larger depth. Wrong assumptions can lead to results far from the true model in this case. Additional information on the general shape of the curve, i.e. single or dual peak, could help to mitigate this effect, even if it cannot directly be included into the inversion. We find that the ellipticity curves can provide stronger constraints on the minimum thickness and velocity of the second layer of the model than on the maximum values. We also consider the effect of instrumentation resonances caused by the lander flexible modes, solar panels, and the SEIS levelling system. Both the levelling system resonances and the lander flexible modes occur at significantly higher frequencies than the expected structural response, i.e. above 35 Hz and 20 Hz, respectively. While the lander and solar panel resonances might be too weak in amplitude to be recorded by SEIS, the levelling system resonances will show up clearly in horizontal spectra, the H/V and ellipticity curves. They are not removed by trying to extract only Rayleigh-wave dominated parts of the data. However, they can be distinguished from any subsurface response by their exceptionally low damping ratios of 1% or less as determined by random decrement analysis. The same applies to lander-generated signals observed in actual data from a Moon analogue experiment, so we expect this analysis will be useful in identifying instrumentation resonances in SEIS data. 相似文献
62.
Deborah L. Domingue Patrick L. Koehn Rosemary M. Killen Ann L. Sprague Menelaos Sarantos Andrew F. Cheng Eric T. Bradley William E. McClintock 《Space Science Reviews》2007,131(1-4):161-186
The existence of a surface-bounded exosphere about Mercury was discovered through the Mariner 10 airglow and occultation experiments.
Most of what is currently known or understood about this very tenuous atmosphere, however, comes from ground-based telescopic
observations. It is likely that only a subset of the exospheric constituents have been identified, but their variable abundance
with location, time, and space weather events demonstrate that Mercury’s exosphere is part of a complex system involving the
planet’s surface, magnetosphere, and the surrounding space environment (the solar wind and interplanetary magnetic field).
This paper reviews the current hypotheses and supporting observations concerning the processes that form and support the exosphere.
The outstanding questions and issues regarding Mercury’s exosphere stem from our current lack of knowledge concerning the
surface composition, the magnetic field behavior within the local space environment, and the character of the local space
environment. 相似文献
63.
Boerner Wolfgang-M. Cole James B. Goddard William R. Tarnawecky Michael Z. Shafai Lotfallah Hall Donald H. 《Space Science Reviews》1983,36(2):195-205
A sensitive search for pulsars inside a sample of gamma-ray source error boxes has been carried out using the Arecibo and Parkes radiotelescopes. The paper describes the motivation of this search and the characteristics of the experiments used. As a preliminary result, new pulsars have been discovered and some of them are possibly candidates to be the counterparts of the gamma-ray sources. 相似文献
64.
William V. Boynton Ann L. Sprague Sean C. Solomon Richard D. Starr Larry G. Evans William C. Feldman Jacob I. Trombka Edgar A. Rhodes 《Space Science Reviews》2007,131(1-4):85-104
The instrument suite on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft is well suited
to address several of Mercury’s outstanding geochemical problems. A combination of data from the Gamma-Ray and Neutron Spectrometer
(GRNS) and X-Ray Spectrometer (XRS) instruments will yield the surface abundances of both volatile (K) and refractory (Al,
Ca, and Th) elements, which will test the three competing hypotheses for the origin of Mercury’s high bulk metal fraction:
aerodynamic drag in the early solar nebula, preferential vaporization of silicates, or giant impact. These same elements,
with the addition of Mg, Si, and Fe, will put significant constraints on geochemical processes that have formed the crust
and produced any later volcanism. The Neutron Spectrometer sensor on the GRNS instrument will yield estimates of the amount
of H in surface materials and may ascertain if the permanently shadowed polar craters have a significant excess of H due to
water ice. A comparison of the FeO content of olivine and pyroxene determined by the Mercury Atmospheric and Surface Composition
Spectrometer (MASCS) instrument with the total Fe determined through both GRNS and XRS will permit an estimate of the amount
of Fe present in other forms, including metal and sulfides. 相似文献
65.
Delory GT Farrell WM Atreya SK Renno NO Wong AS Cummer SA Sentman DD Marshall JR Rafkin SC Catling DC 《Astrobiology》2006,6(3):451-462
Laboratory studies, numerical simulations, and desert field tests indicate that aeolian dust transport can generate atmospheric electricity via contact electrification or "triboelectricity." In convective structures such as dust devils and dust storms, grain stratification leads to macroscopic charge separations and gives rise to an overall electric dipole moment in the aeolian feature, similar in nature to the dipolar electric field generated in terrestrial thunderstorms. Previous numerical simulations indicate that these storm electric fields on Mars can approach the ambient breakdown field strength of approximately 25 kV/m. In terrestrial dust phenomena, potentials ranging from approximately 20 to 160 kV/m have been directly measured. The large electrostatic fields predicted in martian dust devils and storms can energize electrons in the low pressure martian atmosphere to values exceeding the electron dissociative attachment energy of both CO2 and H2O, which results in the formation of the new chemical products CO/O- and OH/H-, respectively. Using a collisional plasma physics model, we present calculations of the CO/O- and OH/H- reaction and production rates. We demonstrate that these rates vary geometrically with the ambient electric field, with substantial production of dissociative products when fields approach the breakdown value of approximately 25 kV/m. The dissociation of H2O into OH/H- provides a key ingredient for the generation of oxidants; thus electrically charged dust may significantly impact the habitability of Mars. 相似文献
66.
Naomi Murdoch David Mimoun Raphael F. Garcia William Rapin Taichi Kawamura Philippe Lognonné Don Banfield W. Bruce Banerdt 《Space Science Reviews》2017,211(1-4):429-455
The SEIS (Seismic Experiment for Interior Structures) instrument onboard the InSight mission to Mars is the critical instrument for determining the interior structure of Mars, the current level of tectonic activity and the meteorite flux. Meeting the performance requirements of the SEIS instrument is vital to successfully achieve these mission objectives. Here we analyse in-situ wind measurements from previous Mars space missions to understand the wind environment that we are likely to encounter on Mars, and then we use an elastic ground deformation model to evaluate the mechanical noise contributions on the SEIS instrument due to the interaction between the Martian winds and the InSight lander. Lander mechanical noise maps that will be used to select the best deployment site for SEIS once the InSight lander arrives on Mars are also presented. We find the lander mechanical noise may be a detectable signal on the InSight seismometers. However, for the baseline SEIS deployment position, the noise is expected to be below the total noise requirement (>97~%) of the time and is, therefore, not expected to endanger the InSight mission objectives. 相似文献
67.
Committee on Space Policy H.Guyford Stever Laurence J. Adams Consultant Retired President William A. Anders Senior Executive Vice President Arden L. Bement Jr Vice President Joseph V. Charyk Chairman of the Board Retired Chairman CEO Richard N. Cooper Robert S. Cooper President Edward E. David Jr President John M. Logsdon Director Jeremiah P. Ostriker Director Samuel C. Phillips Retired General Elmer B. Staats Edward C. Stone Jr Vice President 《Space Policy》1989,5(3)
68.
69.
Over the next 2 decades, NASA and ESA are planning a series of space-based observatories to detect and characterize extrasolar planets. This first generation of observatories will not be able to spatially resolve the terrestrial planets detected. Instead, these planets will be characterized by disk-averaged spectroscopy. To assess the detectability of planetary characteristics in disk-averaged spectra, we have developed a spatially and spectrally resolved model of the Earth. This model uses atmospheric and surface properties from existing observations and modeling studies as input, and generates spatially resolved high-resolution synthetic spectra using the Spectral Mapping Atmospheric Radiative Transfer model. Synthetic spectra were generated for a variety of conditions, including cloud coverage, illumination fraction, and viewing angle geometry, over a wavelength range extending from the ultraviolet to the farinfrared. Here we describe the model and validate it against disk-averaged visible to infrared observations of the Earth taken by the Mars Global Surveyor Thermal Emission Spectrometer, the ESA Mars Express Omega instrument, and ground-based observations of earthshine reflected from the unilluminated portion of the Moon. The comparison between the data and model indicates that several atmospheric species can be identified in disk-averaged Earth spectra, and potentially detected depending on the wavelength range and resolving power of the instrument. At visible wavelengths (0.4-0.9 microm) O3, H2O, O2, and oxygen dimer [(O2)2] are clearly apparent. In the mid-infrared (5-20 microm) CO2, O3, and H2O are present. CH4, N2O, CO2, O3, and H2O are visible in the near-infrared (1-5 microm). A comprehensive three-dimensional model of the Earth is needed to produce a good fit with the observations. 相似文献
70.
William H. Mish James L. Green Mary G. Reph Mauricio Peredo 《Space Science Reviews》1995,71(1-4):815-877
The International Solar-Terrestrial Physics (ISTP) program will provide simultaneous coordinated scientific measurements from most of the major areas of geospace including specific locations on the Earth's surface. This paper describes the comprehensive ISTP ground science data handling system which has been developed to promote optimal mission planning and efficient data processing, analysis and distribution. The essential components of this ground system are the ISTP Central Data Handling Facility (CDHF), the Information Processing Division's Data Distribution Facility (DDF), the ISTP/Global Geospace Science (GGS) Science Planning and Operations Facility (SPOF) and the NASA Data Archive and Distribution Service (NDADS).The ISTP CDHF is the one place in the program where measurements from this wide variety of geospace and ground-based instrumentation and theoretical studies are brought together. Subsequently, these data will be distributed, along with ancillary data, in a unified fashion to the ISTP Principal Investigator (PI) and Co-Investigator (CoI) teams for analysis on their local systems. The CDHF ingests the telemetry streams, orbit, attitude, and command history from the GEOTAIL, WIND, POLAR, SOHO, and IMP-8 Spacecraft; computes summary data sets, called Key Parameters (KPs), for each scientific instrument; ingests pre-computed KPs from other spacecraft and ground basel investigations; provides a computational platform for parameterized modeling; and provides a number of data services for the ISTP community of investigators. The DDF organizes the KPs, decommutated telemetry, and associated ancillary data into products for duistribution to the ISTP community on CD-ROMs. The SPOF is the component of the GGS program responsible for the development and coordination of ISTP science planning operations. The SPOF operates under the direction of the ISTP Project Scientist and is responsible for the development and coordination of the science plan for ISTP spacecraft. Instrument command requests for the WIND and POLAR investigations are submitted by the PIs to the SPOF where they are checked for science conflicts, forwarded to the GSFC Command Management Syntem/Payload Operations Control Center (CMS/POCC) for engineering conflict validation, and finally incorporated into the conflict-free science operations plan. Conflict resolution is accomplished through iteration between the PIs, SPOF and CMS and in consultation with the Project Scientist when necessary. The long term archival of ISTP KP and level-zero data will be undertaken by NASA's National Space Science Data Center using the NASA Data Archive and Distribution Service (NDADS). This on-line archive facility will provide rapid access to archived KPs and event data and includes security features to restrict access to the data during the time they are proprietary. 相似文献