首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   246篇
  免费   0篇
航空   139篇
航天技术   47篇
航天   60篇
  2021年   3篇
  2019年   2篇
  2018年   13篇
  2017年   8篇
  2016年   3篇
  2015年   2篇
  2014年   7篇
  2013年   11篇
  2012年   12篇
  2011年   12篇
  2010年   5篇
  2009年   7篇
  2008年   14篇
  2007年   13篇
  2006年   5篇
  2005年   13篇
  2004年   7篇
  2003年   6篇
  2002年   2篇
  2001年   4篇
  2000年   4篇
  1999年   7篇
  1998年   4篇
  1997年   3篇
  1996年   1篇
  1995年   6篇
  1994年   3篇
  1992年   4篇
  1989年   2篇
  1988年   1篇
  1987年   7篇
  1986年   3篇
  1985年   5篇
  1984年   4篇
  1983年   2篇
  1982年   3篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1975年   2篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
  1968年   7篇
  1967年   9篇
  1966年   7篇
排序方式: 共有246条查询结果,搜索用时 31 毫秒
231.
An experimental method applying microwave techniques to obtain continuous measurement of both the shock and contact discontinuities bounding an air plasma generated in a cylindrical hypersonic shock tube is developed. X-band microwave signals excited in the TE11 mode reflect from the moving shock and contact surfaces. The resulting FM interference pattern is demodulated, yielding continuous velocity versus time data. Results depicting subtle detail of velocity behavior, particularly of the shock front, were obtained over a shock Mach number range of 9 to 13.  相似文献   
232.
Bains W  Seager S 《Astrobiology》2012,12(3):271-281
Redox chemistry is central to life on Earth. It is well known that life uses redox chemistry to capture energy from environmental chemical energy gradients. Here, we propose that a second use of redox chemistry, related to building biomass from environmental carbon, is equally important to life. We apply a method based on chemical structure to evaluate the redox range of different groups of terrestrial biochemicals, and find that they are consistently of intermediate redox range. We hypothesize the common intermediate range is related to the chemical space required for the selection of a consistent set of metabolites. We apply a computational method to show that the redox range of the chemical space shows the same restricted redox range as the biochemicals that are selected from that space. By contrast, the carbon from which life is composed is available in the environment only as fully oxidized or reduced species. We therefore argue that redox chemistry is essential to life for assembling biochemicals for biomass building. This biomass-building reason for life to require redox chemistry is in addition (and in contrast) to life's use of redox chemistry to capture energy. Life's use of redox chemistry for biomass capture will generate chemical by-products-that is, biosignature gases-that are not in redox equilibrium with life's environment. These potential biosignature gases may differ from energy-capture redox biosignatures.  相似文献   
233.
Microbial life on Earth uses a wide range of chemical and energetic resources from diverse habitats. An outcome of this microbial diversity is an extensive and varied list of metabolic byproducts. We review key points of Earth-based microbial metabolism that are useful to the astrophysical search for biosignature gases on exoplanets, including a list of primary and secondary metabolism gas byproducts. Beyond the canonical, unique-to-life biosignature gases on Earth (O(2), O(3), and N(2)O), the list of metabolic byproducts includes gases that might be associated with biosignature gases in appropriate exoplanetary environments. This review aims to serve as a starting point for future astrophysical biosignature gas research.  相似文献   
234.
The compelling evidence for an ocean beneath the ice shell of Europa makes it a high priority for astrobiological investigations. Future missions to the icy surface of this moon will query the plausibly sulfur-rich materials for potential indications of the presence of life carried to the surface by mobile ice or partial melt. However, the potential for generation and preservation of biosignatures under cold, sulfur-rich conditions has not previously been investigated, as there have not been suitable environments on Earth to study. Here, we describe the characterization of a range of biosignatures within potentially analogous sulfur deposits from the surface of an Arctic glacier at Borup Fiord Pass to evaluate whether evidence for microbial activities is produced and preserved within these deposits. Optical and electron microscopy revealed microorganisms and extracellular materials. Elemental sulfur (S?), the dominant mineralogy within field samples, is present as rhombic and needle-shaped mineral grains and spherical mineral aggregates, commonly observed in association with extracellular polymeric substances. Orthorhombic α-sulfur represents the stable form of S?, whereas the monoclinic (needle-shaped) γ-sulfur form rosickyite is metastable and has previously been associated with sulfide-oxidizing microbial communities. Scanning transmission electron microscopy showed mineral deposition on cellular and extracellular materials in the form of submicron-sized, needle-shaped crystals. X-ray diffraction measurements supply supporting evidence for the presence of a minor component of rosickyite. Infrared spectroscopy revealed parts-per-million level organics in the Borup sulfur deposits and organic functional groups diagnostic of biomolecules such as proteins and fatty acids. Organic components are below the detection limit for Raman spectra, which were dominated by sulfur peaks. These combined investigations indicate that sulfur mineral deposits may contain identifiable biosignatures that can be stabilized and preserved under low-temperature conditions. Borup Fiord Pass represents a useful testing ground for instruments and techniques relevant to future astrobiological exploration at Europa.  相似文献   
235.
Abstract Modern ecological niches are teeming with an astonishing diversity of microbial life in biofilms closely associated with mineral surfaces, which highlights the remarkable success of microorganisms in conquering the challenges and capitalizing on the benefits presented by the mineral-water interface. Biofilm formation capability likely evolved on early Earth because biofilms provide crucial cell survival functions. The potential toxicity of mineral surfaces toward cells and the complexities of the mineral-water-cell interface in determining the toxicity mechanisms, however, have not been fully appreciated. Here, we report a previously unrecognized role for extracellular polymeric substances (EPS), which form biofilms in shielding cells against the toxicity of mineral surfaces. Using colony plating and LIVE/DEAD staining methods in oxide suspensions versus oxide-free controls, we found greater viability of wild-type, EPS-producing strains of Pseudomonas aeruginosa PAO1 compared to their isogenic knockout mutant with defective biofilm-producing capacity. Oxide toxicity was specific to its surface charge and particle size. High resolution transmission electron microscopy (HRTEM) images and assays for highly reactive oxygen species (hROS) on mineral surfaces suggested that EPS shield via both physical and chemical mechanisms. Intriguingly, qualitative as well as quantitative measures of EPS production showed that toxic minerals induced EPS production in bacteria. By determining the specific toxicity mechanisms, we provide insight into the potential impact of mineral surfaces in promoting increased complexity of cell surfaces, including EPS and biofilm formation, on early Earth. Key Words: Mineral toxicity-Bacteria-EPS evolution-Biofilms-Cytotoxicity-Silica-Anatase-Alumina. Astrobiology 12, 785-798.  相似文献   
236.
Abstract Orbital and in situ analyses establish that aerially extensive deposits of evaporitic sulfates, including gypsum, are present on the surface of Mars. Although comparable gypsiferous sediments on Earth have been largely ignored by paleontologists, we here report the finding of diverse fossil microscopic organisms permineralized in bottom-nucleated gypsums of seven deposits: two from the Permian (~260?Ma) of New Mexico, USA; one from the Miocene (~6?Ma) of Italy; and four from Recent lacustrine and saltern deposits of Australia, Mexico, and Peru. In addition to presenting the first report of the widespread occurrence of microscopic fossils in bottom-nucleated primary gypsum, we show the striking morphological similarity of the majority of the benthic filamentous fossils of these units to the microorganisms of a modern sulfuretum biocoenose. Based on such similarity, in morphology as well as habitat, these findings suggest that anaerobic sulfur-metabolizing microbial assemblages have changed relatively little over hundreds of millions of years. Their discovery as fossilized components of the seven gypsiferous units reported suggests that primary bottom-nucleated gypsum represents a promising target in the search for evidence of past life on Mars. Key Words: Confocal laser scanning microscopy-Gypsum fossils-Mars sample return missions-Raman spectroscopy-Sample Analysis at Mars (SAM) instrument-Sulfuretum. Astrobiology 12, 619-633.  相似文献   
237.
A major difficulty that has long hindered studies of organic-walled Precambrian microbes in petrographic thin sections is the accurate documentation of their three-dimensional morphology. To address this need, we here demonstrate the use of confocal laser scanning microscopy. This technique, both non-intrusive and non-destructive, can provide data by which to objectively characterize, in situ and at submicron-scale resolution, the cellular and organismal morphology of permineralized (petrified) microorganisms. Application of this technique can provide information in three dimensions about the morphology, taphonomy, and fidelity of preservation of such fossils at a spatial resolution unavailable by any other means.  相似文献   
238.
Recent models for the origin of Jupiter indicate that the Galilean satellites were mostly derived from largely unprocessed solar nebula solids and planetesimals. In the jovian subnebula the solids that built Europa were first heated and then cooled, but the major effect was most likely partial or total devolatilization, and less likely to have been wholesale thermochemical reprocessing of rock + metal compositions (e.g., oxidation of Fe and hydration of silicates). Ocean formation and substantial alteration of interior rock by accreted water and ice would occur during and after accretion, but none of the formation models predicts or implies accretion of sulfates. Europa's primordial ocean was most likely sulfidic. After accretion and later radiogenic and tidal heating, the primordial ocean would have interacted hydrothermally with subjacent rock. It has been hypothesized that sulfides could be converted to sulfates if sufficient hydrogen was lost to space, but pressure effects and the impermeability of serpentinite imply that extraction of sulfate from thoroughly altered Europa-rock would have been inefficient (if indeed Mg sulfates formed at all). Permissive physical limits on the extent of alteration limit the sulfate concentration of Europa's evolved ocean to 10% by weight MgSO(4) or equivalent. Later oxidation of the deep interior of Europa may have also occurred because of water released by the breakdown of hydrated silicates, ultimately yielding S magma and/or SO(2) gas. Geological and astrobiological implications are considered.  相似文献   
239.
As part of the "Cellular Mechanisms of Spaceflight-Specific Stress to Plants" experiment, nine BRIC (Biological Research in Canisters) 100VC canisters, each containing four 100 mm dia polycarbonate petri dishes with embryogenic daylily (Hemerocallis sp.) cultures, were launched on 12 Jan 97 (STS-81), transferred to 'Mir' and returned on 24 May 97 (STS-84). Pre-flight, flight and ground control data for temperature, relative humidity, CO2 and ethylene in the BRIC canisters are presented.  相似文献   
240.
Conclusions We have attempted to model bumps in the light and radial velocity curves of the Beta Cephei star BW Vulpeculae. Two mechanisms, a resonance phenomena and non-linear pulsations, were investigated. The resonance condition was clearly not fulfilled, the calculated period ratio being approximately 0.60, where a value of 0.50 ± 0.03 is required for resonance. In the non-linear calculation, the bump appears, with the correct phase, but was found at an amplitude that is too large. Further, the light curve does not show any bump-like feature. The cause of the bump is the large spurious boost given the star's velocity field by the solution methods.The calculated periods of the stellar models are shorter than those of previous calculations, enhancing the possibility that these stars pulsate in a radial fundamental mode.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号