首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7406篇
  免费   10篇
  国内免费   46篇
航空   3438篇
航天技术   2793篇
综合类   26篇
航天   1205篇
  2021年   60篇
  2019年   51篇
  2018年   132篇
  2017年   87篇
  2016年   76篇
  2014年   154篇
  2013年   201篇
  2012年   187篇
  2011年   271篇
  2010年   186篇
  2009年   312篇
  2008年   384篇
  2007年   203篇
  2006年   184篇
  2005年   218篇
  2004年   214篇
  2003年   254篇
  2002年   152篇
  2001年   229篇
  2000年   153篇
  1999年   182篇
  1998年   212篇
  1997年   149篇
  1996年   199篇
  1995年   250篇
  1994年   224篇
  1993年   126篇
  1992年   179篇
  1991年   76篇
  1990年   75篇
  1989年   178篇
  1988年   59篇
  1987年   63篇
  1986年   77篇
  1985年   249篇
  1984年   179篇
  1983年   142篇
  1982年   169篇
  1981年   230篇
  1980年   75篇
  1979年   53篇
  1978年   55篇
  1977年   51篇
  1976年   42篇
  1975年   53篇
  1974年   51篇
  1973年   47篇
  1972年   38篇
  1970年   45篇
  1969年   48篇
排序方式: 共有7462条查询结果,搜索用时 31 毫秒
721.
The original basis for the Lorentz transformations, and thus special relativity, was the assumption that the observed velocity of interaction of light with matter represents a unique velocity of the electromagnetic wave. This arbitrary decision is not borne out by Maxwell's theories or by any test that might prove that EM energy actually travels in a continuum of velocities. The second postulate as stated by Einstein does not deserve the status of a postulate, as it is at once overly restrictive and ultimately phenomenological-the nature of c is based on experimental measurement rather than on analysis of first principles. The radiation continuum model's (RCM) modified second postulate, however, says nothing about the actual propagation of EM energy, but only of the relative speed with which it must interact with matter to be detected. Utilizing this modified light principle we obtain an intuitive Galilean form invariance for Maxwell's equations. RCM places no upper limit on attainable velocities, and allows for the possibility of communications between humans or particles at speeds far in excess of c. This precludes many of the compatibility problems between the highly successful quantum mechanics and relativity theory  相似文献   
722.
The force on a coil moving with a high-speed parallel to a conducting grid consisting of parallel tubes is investigated. The coil performs a rebound motion or an oscillatory heave motion when pressed toward the grid by reactive on-board engines. The coil is approximated by two parallel wires moving parallel to the grid tubes. The corresponding electrodynamic problem is two dimensional and is solved by expansions in terms of Bessel functions. Expressions are derived for the lift and drag force as well as the heat generated in the tubes in the limit of strong skin effect. The dependence on the grid spacing is analysed in the approximation of no mutual inductance between the tubes. Two specific applications are a shunt deflecting the coil, and a funnel leading to multiple reflection. Finally, the varying magnetic flux threading the coil is considered and the thermal load of the coil is estimated.  相似文献   
723.
The region of South Atlantic Geomagnetic Anomaly (SAGA) was investigated by the Intercosmos-Bulgaria-1300 satellite, launched on August 7, 1981. On the basis of data obtained from 15 orbits during increased geomagnetic activity in August 1981, a map of the Anomaly was elaborated. Two centres of activity were identified. By means of the EMO-5 electrophotometer on board the Intercosmos-Bulgaria-1300 satellite, the atmosphere glow in lines λ 5577 Å, λ 6300 Å and λ 4278 Å was studied.  相似文献   
724.
Thermospheric temperature, composition and wind measurements from the Dynamics Explorer satellite (DE-2) are interpreted using a three dimensional, multiconstituent spectral model. The analysis accounts for tides driven by the absorbed solar radiation as well as energy and momentum coupling involving the magnetosphere and lower atmosphere. We discuss phenomena associated with the annual tide, polar circulation, magnetic storms and substorms.  相似文献   
725.
The circadian rhythm of conidiation in Neurospora crassa is thought to be an endogenously derived circadian oscillation; however, several investigators have suggested that circadian rhythms may, instead, be driven by some geophysical time cue(s). An experiment was conducted on space shuttle flight STS-9 in order to test this hypothesis; during the first 7-8 cycles in space, there were several minor alterations observed in the conidiation rhythm, including an increase in the period of the oscillation, an increase in the variability of the growth rate and a diminished rhythm amplitude, which eventually damped out in 25% of the flight tubes. On day seven of flight, the tubes were exposed to light while their growth fronts were marked. Some aspect of the marking process reinstated a robust rhythm in all the tubes which continued throughout the remainder of the flight. These results from the last 86 hours of flight demonstrated that the rhythm can persist in space. Since the aberrant rhythmicity occurred prior to the marking procedure, but not after, it was hypothesized that the damping on STS-9 may have resulted from the hypergravity pulse of launch. To test this hypothesis, we conducted investigations into the effects of altered gravitational forces on conidiation. Exposure to hypergravity (via centrifugation), simulated microgravity (via the use of a clinostat) and altered orientations (via alterations in the vector of a 1 g force) were used to examine the effects of gravity upon the circadian rhythm of conidiation.  相似文献   
726.
Early Earth and early Mars were similar enough such that past geochemical and climatic conditions on Mars may have also been favorable for the origin of life. However, one of the most striking differences between the two planets was the low partial pressure of dinitrogen (pN2) on early Mars (18 mb). On Earth, nitrogen is a key biological element and in many ecosystems the low availability of fixed nitrogen compounds is the main factor limiting growth. Biological fixation of dinitrogen on Earth is a crucial source of fixed nitrogen. Could the low availability of dinitrogen in the primordial Martian atmosphere have prevented the existence, or evolution of Martian microbiota? Azotobacter vinelandii and Azomonas agilis were grown in nitrogen free synthetic medium under various partial pressures of dinitrogen ranging from 780-0 mb (total atmosphere=1 bar). Below 400 mb the biomass, cell number, and growth rate decreased with decreasing pN2. Both microorganisms were capable of growth at a pN2 as low as 5 mb, but no growth was observed at a pN2 < or = 1 mb. The data appear to indicate that biological nitrogen fixation could have occurred on primordial Mars (pN2=18 mb) making it possible for a biotic system to have played a role in the Martian nitrogen cycle. It is possible that nitrogen may have played a key role in the early evolution of life on Mars, and that later a lack of available nitrogen on that planet (currently, pN2=0.2 mb) may have been involved in its subsequent extinction.  相似文献   
727.
The paper elaborates on “ lessons learned” from two recent ESA workshops, one focussing on the role of Innovation in the competitiveness of the space sector and the second on technology and engineering aspects conducive to better, faster and cheaper space programmes. The paper focuses primarily on four major aspects, namely:
1. a) the adaptations of industrial and public organisations to the global market needs;
2. b) the understanding of the bottleneck factors limiting competitiveness;
3. c) the trends toward new system architectures and new engineering and production methods;
4. d) the understanding of the role of new technology in the future applications.

Under the pressure of market forces and the influence of many global and regional players, applications of space systems and technology are becoming more and more competitive. It is well recognised that without major effort for innovation in industrial practices, organisations, R&D, marketing and financial approaches the European space sector will stagnate and loose its competence as well as its competitiveness. It is also recognised that a programme run according to the “better, faster, cheaper” philosophy relies on much closer integration of system design, development and verification, and draws heavily on a robust and comprehensive programme of technology development, which must run in parallel and off-line with respect to flight programmes.

A company's innovation capabilities will determine its future competitive advantage (in time, cost, performance or value) and overall growth potential. Innovation must be a process that can be counted on to provide repetitive, sustainable, long-term performance improvements. As such, it needs not depend on great breakthroughs in technology and concepts (which are accidental and rare). Rather, it could be based on bold evolution through the establishment of know-how, application of best practices, process effectiveness and high standards, performance measurement, and attention to customers and professional marketing. Having a technological lead allows industry to gain a competitive advantage in performance, cost and opportunities. Instrumental to better competitiveness is an R&D effort based on the adaptation of high technology products, capable of capturing new users, increasing production, decreasing the cost and delivery time and integrating high level of intelligence, information and autonomy. New systems will have to take in to account from the start what types of technologies are being developed or are already available in other areas outside space, and design their system accordingly. The future challenge for “faster, better, cheaper” appears to concern primarily “cost-effective”, performant autonomous spacecraft, “cost-effective”, reliable launching means and intelligent data fusion technologies and robust software serving mass- market real time services, distributed via EHF bands and Internet.

In conclusion, it can be noticed that in the past few years new approaches have considerably enlarged the ways in which space missions can be implemented. They are supported by true innovations in mission concepts, system architecture, development and technologies, in particular for the development of initiatives based on multi-mission mini-satellites platforms for communication and Earth observation missions. There are also definite limits to cost cutting (such as lowering heads counts and increasing efficiency), and therefore the strategic perspective must be shifted from the present emphasis on cost-driven enhancement to revenue-driven improvements for growth. And since the product life-cycle is continuously shortening, competitiveness is linked very strongly with the capability to generate new technology products which enhance cost/benefit performance.  相似文献   

728.
We discuss current progress and future plans for the general antiparticle spectrometer experiment (GAPS). GAPS detects antideuterons through the X-rays and pions emitted during the deexcitation of exotic atoms formed when the antideuterons are slowed down and stopped in targets. GAPS provides an exceptionally sensitive means to detect cosmic-ray antideuterons. Cosmic-ray antideuterons can provide indirect evidence for the existence of dark matter in such form as neutralinos or Kaluza–Klein particles. We describe results of accelerator testing of GAPS prototypes, tentative design concepts for a flight GAPS detector, and near-term plans for flying a GAPS prototype on a balloon.  相似文献   
729.
The different types of convective phenomena which may occur during the dendritic solidification of metallic alloys are discussed from an order of magnitude analysis. Bulk thermal convection and/or interdendritic solutal convection have to be considered according to the values of the experimental data. Scaling laws for the solute boundary layer resulting from bulk thermal convection have already been derived. It is shown here that the interdendritic flow depends on a solutal Grashof number Gr based on the horizontal density gradient and a characteristic length Ls which is of the order of the liquid channels width. For Gr < 1, which is generally verified in practical cases, the interdendritic flow velocity Ur is proportional to the Grashof number. This a priori law compares favorably with the results of horizontal solidification experiments where the mean interdendritic flow velocity has been estimated from the resulting measured macrosegregation. In these experiments, as well as for most horizontal dendritic solidifications of metallic alloys at 1 g, the ratio UrR (R is the growth rate) is of order one. In order to cancel the interdendritic flow effects, this ratio has to be lowered by one order of magnitude. According to our analysis, this can be obtained by performing the experiments either at a slightly reduced g level (~10?1 g), or at 1 g in a vertical stable configuration with a sufficiently low residual horizontal thermal gradient.  相似文献   
730.
The complex problems associated with the aerodynamics of blade/vortex interactions, the dynamics of a blade displaced out of its plane of rotation, and the position control of a hovering helicopter are discussed. Simplified models help to describe, and appear to be adequate for analysing, many aspects of these problems. Free wake analyses are shown to be of importance in determining blade loads and performance for hovering flight or for wind turbines. Unsteady aerodynamics and careful definition of the wake formation are required when computing vibratory airloads in forward flight.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号