首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8314篇
  免费   21篇
  国内免费   22篇
航空   3890篇
航天技术   2889篇
综合类   32篇
航天   1546篇
  2021年   80篇
  2019年   50篇
  2018年   176篇
  2017年   117篇
  2016年   116篇
  2015年   56篇
  2014年   188篇
  2013年   242篇
  2012年   227篇
  2011年   352篇
  2010年   254篇
  2009年   361篇
  2008年   431篇
  2007年   240篇
  2006年   172篇
  2005年   214篇
  2004年   222篇
  2003年   252篇
  2002年   167篇
  2001年   252篇
  2000年   159篇
  1999年   182篇
  1998年   231篇
  1997年   140篇
  1996年   208篇
  1995年   239篇
  1994年   241篇
  1993年   154篇
  1992年   196篇
  1991年   71篇
  1990年   70篇
  1989年   190篇
  1988年   76篇
  1987年   74篇
  1986年   100篇
  1985年   236篇
  1984年   179篇
  1983年   158篇
  1982年   155篇
  1981年   267篇
  1980年   78篇
  1979年   69篇
  1978年   69篇
  1977年   56篇
  1975年   68篇
  1974年   56篇
  1972年   52篇
  1971年   58篇
  1970年   49篇
  1969年   49篇
排序方式: 共有8357条查询结果,搜索用时 0 毫秒
161.
The paper is concerned with the numerical simulation and the analysis of some kinds of flow regimes which can develop in Bridgman and Czochralski systems for material processings. The flows in the liquid phase are investigated considering two-dimensional and axisymmetric models. The time-dependent regimes were studied for a zero-Prandtl-number fluid layer confined inside a two-dimensional cavity of aspect ratio (length-to-height) A=4, involving a stress-free upper surface and submitted to a horizontal temperature gradient. The range of Grashof number was varied up to the conditions at which the flow goes from oscillatory to chaotic type behaviours. The combined influence of the temperature gradients and of the rotations of the crucible and of the seed/crystal was investigated for a Czochralski model. The axisymmetric regimes were studied for a Prm=0.015 liquid melt confined inside a cylindrical crucible of aspect ratio (height-to-radius) Am=2, and coupled to a viscous encapsulant liquid layer (10<Pre<1200) of aspect ratio Ae=0.5. A number of steady and (transient) time-dependent flow patterns are identified.  相似文献   
162.
The General Antiparticle Spectrometer (GAPS) is a new approach to the indirect detection of dark matter. It relies on searching for primary antideuterons produced in the annihilation of dark matter in the galactic halo. Low energy antideuterons produced through Standard Model processes, such as collisions of cosmic-rays with interstellar baryons, are greatly suppressed compared to primary antideuterons. Thus a low energy antideuteron search provides a clean signature of dark matter. In GAPS antiparticles are slowed down and captured in target atoms. The resultant exotic atom deexcites with the emission of X-rays and annihilation pions, protons and other particles. A tracking geometry allows for the detection of the X-rays and particles, providing a unique signature to identify the mass of the antiparticle. A prototype detector was successfully tested at the KEK accelerator in 2005, and a prototype GAPS balloon flight is scheduled for 2011. This will be followed by a full scale experiment on a long duration balloon from Antarctica in 2014. We discuss the status and future plans for GAPS.  相似文献   
163.
164.
We describe a new version of the Parameterized Regional Ionospheric Model (PARIM) which has been modified to include the longitudinal dependences. This model has been reconstructed using multidimensional Fourier series. To validate PARIM results, the South America maps of critical frequencies for the E (foE) and F (foF2) regions were compared with the values calculated by Sheffield Plasmasphere-Ionosphere Model (SUPIM) and IRI representations. PARIM presents very good results, the general characteristics of both regions, mainly the presence of the equatorial ionization anomaly, were well reproduced for equinoctial conditions of solar minimum and maximum. The values of foF2 and hmF2 recorded over Jicamarca (12°S; 77°W; dip lat. 1°N; mag. declination 0.3°) and sites of the conjugate point equatorial experiment (COPEX) campaign Boa Vista (2.8°N; 60.7°W; dip lat. 11.4°; mag. declination −13.1°), Cachimbo (9.5°S; 54.8°W; dip lat. −1.8°; mag. declination −15.5°), and Campo Grande (20.4°S; 54.6°W; dip lat. −11.1°; mag. declination −14.0°) have been used in this work. foF2 calculated by PARIM show good agreement with the observations, except during morning over Boa Vista and midnight-morning over Campo Grande. Some discrepancies were also found for the F-region peak height (hmF2) near the geomagnetic equator during times of F3 layer occurrences. IRI has underestimated both foF2 and hmF2 over equatorial and low latitude sectors during evening-nighttimes, except for Jicamarca where foF2 values were overestimated.  相似文献   
165.
We analyze the multifractal scaling of the modulus of the interplanetary magnetic field near and far upstream of the Earth’s bow shock, measured by Cluster and ACE, respectively, from 1 to 3 February 2002. The maximum order of the structure function is carefully estimated for each time series using two different techniques, to ensure the validity of our high-order statistics. The first technique consists of plotting the integrand of the pth order structure function, and the second technique is a quantitative method which relies on the power-law scaling of the extreme events. We compare the scaling exponents computed from the structure functions of magnetic field differences with the predictions obtained by the She–Lévêque model of intermittency in anisotropic magnetohydrodynamic turbulence. Our results show a good agreement between the model and the observations near and far upstream of the Earth’s bow shock, rendering support for the modelling of universal scaling laws based on the Kolmogorov phenomenology in the presence of sheet-like dissipative structures.  相似文献   
166.
Following previous findings from ongoing GPS research in Thailand since 2004 we continue to exploit the GPS technique to monitor and model land motions induced by the Sumatra–Andaman Earthquake. Our latest results show that up to the end of 2010, Thailand has been co-seismically displaced and is subsequently undergoing a post-seismic horizontal deformation with total displacements (co-seismic plus post-seismic) ranging from 10.5 to 74.7 cm. We observed the largest horizontal displacements in the southern part of Thailand and moderate and small displacements in the central and northern parts. In addition to horizontal displacements throughout Thailand, continuous GPS measurements show that large parts of Thailand are subsiding at rates up to 1 cm/yr. It is the first time that such vertical post-seismic deformations at large distances (650–1500 km away from the Earthquake’s epicentre) have been recorded. We have investigated the physical processes leading to the observed subsidence. While after-slip on the subduction interface induces negligible or even slightly positive vertical motions, relaxation in the asthenosphere is associated with a sizable subsidence. Predictions from a 3D finite element model feature an asthenosphere with an effective viscosity of the order of 3 * 1018 Pas, fit the horizontal post-seismic data and the observed subsidence well. This model is then used to predict the subsidence over the whole seismic cycle. The subsidence should go on with a diminishing rate through the next two decades and its final magnitude should not exceed 10 cm in the Bangkok area.  相似文献   
167.
We compute a series of Jason-2 GPS and SLR/DORIS-based orbits using ITRF2005 and the std0905 standards ( Lemoine et al., 2010). Our GPS and SLR/DORIS orbit data sets span a period of 2 years from cycle 3 (July 2008) to cycle 74 (July 2010). We extract the Jason-2 orbit frame translational parameters per cycle by the means of a Helmert transformation between a set of reference orbits and a set of test orbits. We compare the annual terms of these time-series to the annual terms of two different geocenter motion models where biases and trends have been removed. Subsequently, we include the annual terms of the modeled geocenter motion as a degree-1 loading displacement correction to the GPS and SLR/DORIS tracking network of the POD process. Although the annual geocenter motion correction would reflect a stationary signal in time, under ideal conditions, the whole geocenter motion is a non-stationary process that includes secular trends. Our results suggest that our GSFC Jason-2 GPS-based orbits are closely tied to the center of mass (CM) of the Earth consistent with our current force modeling, whereas GSFC’s SLR/DORIS-based orbits are tied to the origin of ITRF2005, which is the center of figure (CF) for sub-secular scales. We quantify the GPS and SLR/DORIS orbit centering and how this impacts the orbit radial error over the globe, which is assimilated into mean sea level (MSL) error, from the omission of the annual term of the geocenter correction. We find that for the SLR/DORIS std0905 orbits, currently used by the oceanographic community, only the negligence of the annual term of the geocenter motion correction results in a – 4.67 ± 3.40 mm error in the Z-component of the orbit frame which creates 1.06 ± 2.66 mm of systematic error in the MSL estimates, mainly due to the uneven distribution of the oceans between the North and South hemisphere.  相似文献   
168.
International Reference Ionosphere (IRI) model is the widely used empirical model for ionospheric predictions, especially TEC which is an important parameter for radio navigation and communication. The Fortran based IRI-2007 does not support real-time interactive visualization and debugging. Therefore, the source code is converted into Matlab and is validated for the purposes of this study. This facilitates easy representation of results and for near real-time implementation of IRI in the applications including spacecraft launching, now casting, pseudolite based navigation systems etc. In addition, the vertical delay results over the equatorial region derived from IRI and GPS data of three IGS stations namely Libreville (Garbon, Africa), Brasilia (Brazil, South America) and Hyderabad (India, Asia) are compared. As the IRI model does not account for plasmasphere TEC, the vertical delays are underestimated compared to vertical delays of GPS signals. Therefore, the model should be modified accordingly for precise TEC estimation.  相似文献   
169.
Today’s space debris environment shows major concentrations of objects within distinct orbital regions for nearly all size regimes. The most critical region is found at orbital altitudes near 800 km with high declinations. Within this region many satellites are operated in so called sun-synchronous orbits (SSO). Among those, there are Earth observation, communication and weather satellites. Due to the orbital geometry in SSO, head-on encounters with relative velocities of about 15 km/s are most probable and would thus result in highly energetic collisions, which are often referred to as catastrophic collisions, leading to the complete fragmentation of the participating objects. So called feedback collisions can then be triggered by the newly generated fragments, thus leading to a further population increase in the affected orbital region. This effect is known as the Kessler syndrome.  相似文献   
170.
Employing coronagraphic and EUV observations close to the solar surface made by the Solar Terrestrial Relations Observatory (STEREO) mission, we determined the heliocentric distance of coronal mass ejections (CMEs) at the starting time of associated metric type II bursts. We used the wave diameter and leading edge methods and measured the CME heights for a set of 32 metric type II bursts from solar cycle 24. We minimized the projection effects by making the measurements from a view that is roughly orthogonal to the direction of the ejection. We also chose image frames close to the onset times of the type II bursts, so no extrapolation was necessary. We found that the CMEs were located in the heliocentric distance range from 1.20 to 1.93 solar radii (Rs), with mean and median values of 1.43 and 1.38 Rs, respectively. We conclusively find that the shock formation can occur at heights substantially below 1.5 Rs. In a few cases, the CME height at type II onset was close to 2 Rs. In these cases, the starting frequency of the type II bursts was very low, in the range 25–40 MHz, which confirms that the shock can also form at larger heights. The starting frequencies of metric type II bursts have a weak correlation with the measured CME/shock heights and are consistent with the rapid decline of density with height in the inner corona.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号